
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2017

AutoProv: An Automated File Provenance
Collection Tool
Ryan A. Good

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Data Storage Systems Commons, Information Security Commons, and the Systems
and Communications Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Good, Ryan A., "AutoProv: An Automated File Provenance Collection Tool" (2017). Theses and Dissertations. 1574.
https://scholar.afit.edu/etd/1574

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1574?utm_source=scholar.afit.edu%2Fetd%2F1574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

AUTOPROV: AN AUTOMATED FILE PROVENANCE
COLLECTION TOOL

THESIS

Ryan A. Good, Lt, USAF

AFIT-ENG-MS-17-M-031

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the official
policy or position of the United States Air Force, the United States Department of Defense
or the United States Government.
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

www.manaraa.com

AFIT-ENG-MS-17-M-031

AUTOPROV: AN AUTOMATED FILE PROVENANCE COLLECTION
TOOL

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Ryan A. Good

2nd Lt, USAF

March 2017

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-17-M-031

AUTOPROV: AN AUTOMATED FILE PROVENANCE COLLECTION TOOL

THESIS

Ryan A. Good
2nd Lt, USAF

Committee Membership:

Gilbert L. Peterson, PhD
Chairman

Samuel J. Stone, PhD
Member

Alan C. Lin, PhD
Member

www.manaraa.com

AFIT-ENG-MS-17-M-031

Abstract

A file’s provenance is a detailing of its origins and activities. There are tools available

that are useful in maintaining the provenance of a file. Unfortunately for digital forensics,

these tools require prior installation on the computer of interest while provenance generating

events happen. The presented tool addresses this by reconstructing a file’s provenance from

several temporal artifacts. It identifies relevant temporal and user correlations between these

artifacts, and presents them to the user. A variety of predefined use cases and real world

data are tested against to demonstrate that this software allows examiners to draw useful

conclusions about the provenance of a file.

iv

www.manaraa.com

Acknowledgments

I owe a deep debt of gratitude to my advisor and committee members for guiding me through

the rewarding process of creating a Thesis. Thanks also to Kevin Cooper, for providing

excellent insights on several difficult coding concepts. Finally, thanks to my friends and

loved ones for being there to support me and make my time at AFIT truly enjoyable.

Ryan A. Good

v

www.manaraa.com

Table of Contents

Abstract iv

Acknowledgments v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Forensic Process . 1
1.2 Problem Statement . 4
1.3 Hypothesis . 4
1.4 Assumptions . 5
1.5 Contributions . 5
1.6 Summary . 5

2 Related Work 7
2.1 Provenance . 7
2.2 Sources of Provenance Data . 9
2.3 Tools for Provenance Data . 11
2.4 File Provenance Maintenance Systems . 14
2.5 Automating Digital Forensics . 16
2.6 Summary . 20

3 Digital Forensics File Provenance Generation 22
3.1 Overview . 22
3.2 Data Gathering (DataGather.py) . 24

3.2.1 Browser History . 29
3.3 Data Processing (DataProcess.py) . 31

3.3.1 Outputs . 43

4 Experimental Results 52
4.1 Use Case Testing . 52

4.1.1 Use Cases . 52
4.1.2 Use Case Results . 53

4.2 Real Data Corpus (RDC) Testing . 57
4.2.1 Results . 58

4.3 Summary . 79

5 Conclusions 80
5.1 Future Work . 81

vi

www.manaraa.com

List of Figures

1 DOJ Forensic Steps [5] . 1
2 AutoProv Project Structure . 24
3 Fire Fox Table Relationship . 30
4 Output Directory Structure . 32
5 Time Line Insertions . 35
6 Time Line Insertions Continued . 36
7 Correlation Categories . 44
8 Time line Summary (Image 5: File 2) . 57
9 Time line Summary (Image 1: File 1) . 59
10 Time line Summary (Image 2: File 1) . 62
11 Time line Summary (Image 2: File 2) . 64
12 Time line Summary (Image 2: File 3) . 66
13 Time line Summary (Image 2: File 4) . 68
14 Time line Summary (Image 3: File 1) . 71
15 Time line Summary (Image 5: File 2) . 74

vii

www.manaraa.com

List of Tables

1 Tool Summary Table . 7
2 Temporal Granularity . 25

viii

www.manaraa.com

1. Introduction

Computer forensics, which involves analyzing a digital medium for evidence of or related

to a crime [8], requires the tracking and digesting of a myriad of files and their relationships.

Parsing through this information is a daunting task, and the time requirement of this analysis

can prevent an examiner from quickly obtaining the information they need to solve a crime.

The relationship between files and their origins, along with the times and ways in which they

were modified and accessed, and by whom, can help greatly speed up this process.

An object’s provenance is its place of origin, or its history [23]. Based on this definition,

file provenance, an important forensic resource and the inspiration for this study, is the

“ownership and the actions performed on a data object”[15]. Ownership describes who

created the file, or who brought the file onto the system, while actions describe post arrival

file interactions. Automating the identification of these digital data relationships can help

greatly expedite the forensic process.

1.1 Forensic Process

According to the Department of Justice, the steps in the forensic process are Prepa-

ration/Extraction, Identification, and Analysis [5]. Figure 1 shows these steps and their

presence within the greater scope of the investigation.

Figure 1: DOJ Forensic Steps [5]

When attempting to determine where a file originated from, an examiner starts by mount-

ing the image they are interested in as read only. Mounting the image as read only ensures

1

www.manaraa.com

the image integrity maintained, and that the data within is not altered in any way. This is

important, because if the image is modified it is no longer viable in a court room setting.

After the image is mounted, the examiner looks at the metadata for the file under investi-

gation. The metadata contains a plethora of useful information, such as the creator of the

file, who last modified the file, and when these things occur. It may be tempting to just

take these values and assume that the origins of the file are known. Unfortunately, these

values are often missing, and are easily modified by a savvy cyber criminal. Therefore, the

examiner must either fill in the missing information, or validate whatever data is available.

The examiner should then view the mtime, ctime, and atime of the file they are

interested in [17]. The mtime is the last time the file was modified. It is updated whenever

the content of a file is changed. The ctime is also updated whenever a file’s content is

changed; however, it can additionally be updated whenever a file’s attributes are changed.

A file’s attributes can be changed by a number of factors, such as file movement, or ownership

change. The atime is the last time the file was interacted with in any way. This can be

a result of simply opening the file. To summarize: if the file is simply opened and viewed,

only the atime changes. If it is opened, viewed, and edited, the atime and mtime both

change. If the file is opened, edited, and placed into another directory, then all three of these

values change. It is also important to note that all three of these values change if a file is

copied and pasted. This is because copying and pasting is creating a new file. If a file is

simply moved this does not occur, as it is still the same file.

At this point, the examiner is free to pursue a number of paths, in whatever ordering

they choose. There are a number of actions that most examiners normally turn to in order to

determine the provenance of a file. The first is to use the tool log2timeline, in order to create

a time line of events that occurred on the image of interest. The examiner could always

construct a time line manually, but using a tool such as log2timeline is far more efficient.

log2timeline provides the examiner with information on all the activity within the system.

2

www.manaraa.com

Generating this time line; however, takes a great deal of time. Fortunately, the examiner

most likely does not need a time line on all of the system’s activities. Therefore, they can

use filters to have the tool only run on the more relevant portions of the image.

Now that these time lines are available, the examiner begins to parse them in order to

gain a more thorough understanding of the system. The most valuable information is within

the system’s registry. Time lines of individual user activity are within the NTUSER.dat

hive, while the SYSTEM registry contains various system configuration information.

One of the richest sources of provenance on a file system is the registry [6]. The reg-

istry consists of a number of hive files that do anything from holding system configuration

information to tracking the activities of individual users. Whenever something happens on

the system, it is almost a guarantee that it impacts the registry in some way. All registry

keys have a value called the “last write time”. Whenever a relevant event occurs, the value

changes. This is what time line generators such as log2timeline look to when they construct

their time line of system events.

The registry consists of two separate types of hives: System hives, and User hives[6].

System hives include the Security, Security Account Manager (SAM), System, Software,

and AmCache hives. User hives include NTUSER.DAT and USRCLASS.DAT. System hives

associate with the overall functioning of the computer system itself, while user hives relate

to specific users (each user has their own NTUSER.DAT and USRCLASS.DAT hives). For

example, The security hive contains the system’s operations, as well as data pertaining to

configurations. The SAM hive stores user credentials, and enables user authentication both

locally and remotely. The most valuable registry for file provenance is the NTUSER.DAT

user hive, as it logs user activities, including file interactions and program executions.

3

www.manaraa.com

1.2 Problem Statement

Based on the brief summary above of the path an examiner takes to rebuild a file’s

provenance on a forensic image, it is clear that this task is quite possible. Unfortunately,

gathering all of this data and parsing it is time consuming, there is currently no software

that automates the entire process. Software that can quickly rebuild the provenance of a file

by noting correlations and generating time lines can save forensic professionals a great deal

of time, and allow them to more quickly determine the origins and activities of any files of

interest to an investigation.

Completing this task on a forensic image is far more difficult than on a live machine. A

live machine provides access to the system’s memory, and the ability to track all activity

as it occurs. With a forensic image, the user faces the consequences of large amounts of

time passing without the tracking of any system activity. During this time period, data

availability can fade as it is automatically wiped from the system [4]. Information can

also be purposefully removed, and this activity is much more difficult to discover on a

forensic image. Access to the system’s Random Access Memory (RAM) is lost as well, as all

information stored within RAM is volatile. This includes data in use by applications that

the user currently has open, which can contain valuable insights into the user’s activities.

Therefore, any automated discovery of provenance related information is restricted to the

system’s registry hives, various configuration files, and file metadata.

1.3 Hypothesis

It is possible to recreate the provenance of a file located on a forensic image, in most

cases. This is true as long as enough information is available within the metadata of the file,

as well as the registry. It is possible to automate the process used to gather this provenance

information using forensic tools that are already available. This thesis creates a proof of

4

www.manaraa.com

concept algorithm that automates the gathering of provenance, without creating software

that is redundant enough to account for all possibilities or be fully and undoubtedly correct.

The provenance provided by this algorithm requires verification by the examiner; however,

the provenance is highly useful in tailoring the investigative process and saving time.

1.4 Assumptions

This thesis assumes that the files this tool analyzes do not have their provenance purpose-

fully obfuscated. Dealing with the activity of tools such as Timestomp [24] is outside of the

scope of this research project. This tool is useful as a guide to further tailor the investigative

process, and is not intended to draw definitive conclusions about the provenance of a file.

1.5 Contributions

This thesis presents a proof of concept piece of software named AutoProv, short for

Automated Provenance, that shows it is possible to thoroughly recreate the provenance of

a file of interest on a forensic image. All previous provenance rebuilding efforts focused

on dealing with live images, and tracking all user and program activities in order to rebuild

provenance. AutoProv shows that, while not nearly as thorough as fully tracking provenance

on a live image, it is possible to recreate large portions of the provenance of a file present on a

forensic image. This is especially true when dealing with files that provide useful metadata,

such as Microsoft Office documents.

1.6 Summary

A file’s provenance consists of various forensic artifacts that enable the discovery of a file’s

history. This includes the file’s creation, as well as any other movements and modifications

enacted upon the file. Tools already exist that enable the automated gathering of a file’s

5

www.manaraa.com

provenance on a live system. This thesis shows that automated provenance gathering is also

possible on a forensic image.

6

www.manaraa.com

2. Related Work

The work related to this topic includes anything related to file provenance, and the

gathering of provenance data. Following the discussion of provenance and its sources is a

passage on the current systems that are in place to automatically track file provenance.

These “file provenance maintenance systems” are constantly active, tracking all activities

on the system in order to build a complete provenance picture. The discussion then focuses

on studies related to automating forensic analysis without the use of a backbone system,

such as a File Provenance Maintenance System (FPMS). A summary of the various tools

discussed within this chapter is available within Table 1.

Table 1: Tool Summary Table

Tool Summary

Provenance

Maintenance

Systems

Image

Analysis

Time Line

Generation

Automation

PASS FTK log2timeline pyflag

FiPS EnCASE PLASO ramparser

OPUS TSK PyDFT FACE

Zeitline RegRipper

Tapestry

2.1 Provenance

Provenance refers to the earliest known history of something. It can also refer to the

record of ownership of an object [23]. Therefore it makes sense that when dealing with

computers, provenance is the origins of a piece of data, its relationship to other pieces of

7

www.manaraa.com

data, as well as the process that created it. Provenance data is extremely valuable to scientific

forensic communities. It ensures that data is accurate, as well as current. There are many

ways that files can obtain additional provenance data. A file created by one person could be

edited by many others. It could be transferred between them using FTP, email, and many

other protocols and methods. The source of some of its content may be from another file,

which could be copied and pasted over. All of these factors contribute to the origins of a file.

One important part of provenance analysis is understanding the timing associated with

the events surrounding the creation, modification, and transference of a file. Analyzing

the history associated with a file provides excellent insights to examiners on the origins

of that file. A simple starting point for learning about a file’s creation and movements is

time stamps. Time stamps exist in some form on most if not all file systems, and provide

interesting insights into a file’s modification history, or even its creation. Unfortunately,

the recording of useful history such as last access time is disabled by many system power

users. Tools such as Timestomp allow users to alter their time stamps and can complicate

an examiner’s attempts at tracking user history.

Provenance is also useful as meta-data, especially within scientific and business applica-

tions [15]. Meta-data can allow for much more powerful searches, enabling a user to search

for a file based on who worked on it in the past, or its origins. Many times users forget the

exact document that is of interest, but remember that they sent an email to someone about

relevant data. With this information, it is possible to narrow the spectrum of possible docu-

ments, allowing the user to more quickly identify the object of interest. Correcting mistakes

is another valuable use of provenance data. A user may create a file that contains data that

influences other files. If that data is incorrect, it has far reaching consequences that the

original creator is not aware of. Fortunately, with provenance, the creator of the original

data can find out who else is using this information, and alert them to the correction.

A large part of forensic investigations involves searching for a particular piece of data

8

www.manaraa.com

within a file. Many tools automatically search the system’s storage for a string or other

relevant information [2]. However, if the information is split between multiple locations,

such as the registry and the browser history, the tool may fail. Therefore it is important

for examiners to find out the search methodology of their tool of choice, and ensure that

it is able to find information split between multiple data units. Unallocated data can also

contain important information. Examiners often search unallocated data units to determine

if there is any meaningful data present. TSK provides a tool, dls, that is able to accomplish

this task. According to TSK, data not used by the file system is unallocated. All other data

is allocated.

Technological changes inevitably bring with them more provenance acquisition challenges.

For example, the advent of Near Data Processing (NDP) is an important change in computer

architecture. In NDP “specific computations can be directly executed on the low frequency

wimpy cores used in storage devices” [1]. This has interesting implications for provenance,

as it could cause difficulties in tracking the changes to data that occur on these storage cores.

Provenance completeness is important for the fidelity of any provenance system, and without

this data the provenance is lacking. For this reason, computer hardware must become an

integrated part of the provenance process.

2.2 Sources of Provenance Data

One of the first places an inspector looks for provenance data is a file’s metadata. The

metadata of a file contains information on the creation date of the file [29]. It also records the

last modification date of the file, which is the last time a change was made. In many cases,

especially when dealing with Microsoft Office, the metadata also records the user name of

the individuals who create and modify the file. This information is valuable when trying to

determine attribution.

Finding redundant data for verification purposes is a powerful solution to the potential

9

www.manaraa.com

incorrectness of time stamps and metadata. Registry files are an excellent source of this

kind of information, as well as browser history. Proxies and firewalls, entities that a suspect

cannot interact with without advanced skills, are also valuable for determining the a file’s

provenance.

The registry contains a number of hives that each possess data on the various system

and user operations [6]. For example, the security hive contains information on the audit

policies of the system. The audit policies determine whether certain information is available,

such as the history of users logging into the system. The SAM hive determines all the user

and group configurations/accounts on the system of interest. The most useful information

it presents includes the name and permissions of the groups and users present, the creation

date and time of the accounts and groups, and the date and time of each user’s last log

in. Information on USB devices is also available within the registry, as the system hive

keeps a log of USB activity. This information includes the date and time a USB device

was last attached to the system. USB data is valuable when combined with other relevant

system interactions. Through examining user activity during the time span of the USB’s

attachment, it is possible to determine what user account is associated with connection of

the USB device to the system.

Web browsers are one of the most common file sources, as users use them as an interface

to acquire various files from web hosts [19]. Email is another common file source, and many

users forgo desktop email solutions such as Microsoft Outlook, and choose to use a web

based solution from within their browser instead. Most browsers have a built in structure

for maintaining their web history, which is non-volatile. This history is useful for determining

the probability of a file arriving via web download, and the download source if this is the

case.

Proxies and firewalls often keep activity logs. These logs are valuable for verification

when an examiner is unsure of the validity of the data found within a system [32]. By cross-

10

www.manaraa.com

referencing the information found within a firewall’s logs with the information of interest on

a system image, an examiner obtains greater certainty that the data is accurate.

2.3 Tools for Provenance Data

A variety of tools are available for gathering file provenance, and forensic data in general.

The three most common ones used in the initial analysis of an image are FTK, TSK, and

EnCase. EnCase requires much more training for the examiner than the other tool sets,

searching is confusing, and there is no log file available for examiners [18]. However, EnCase

has incredible search capabilities and allows for greater analytic convenience. FTK is easier

to use than EnCase, requiring less training for the examiner. This is mostly due to its

intuitive interface. Unfortunately it also has a lengthy image importing process and lacks

customization options [18]. TSK, on the other hand, has a vast array of customization

options thanks to Perl scripting, and works well with other Linux tools. Detracting from

this, is its lack of ability to identify encrypted files, and vagueness in notifying the operator

of existing overwritten files.

Log2timeline is a valuable tool for extracting temporal artifacts from digital media. The

historical data contained within a forensic image, when gathered from the many sources

that are available, is difficult to manage and parse effectively [12]. Log2timeline provides a

framework that helps forensics experts view the image’s history without becoming completely

overwhelmed with all of the information presented. It also bypasses much of the work that

comes with extracting time stamps from a variety of sources, as different artifacts store

time stamps in different formats. Log2timeline aggregates all of these time stamps into a

manageable format. It uses the same time stamp annotations as TSK: crtime is when the

file was created, mtime is the time at which the file was last modified, and atime is the

last time that the file was accessed.

Log2timeline excels at pulling all of the information from an image that has a time stamp

11

www.manaraa.com

associated with it. Unfortunately, it does not allow for the aggregation of that data into a

form that allows for easily determining the provenance of a specific file. For a user interested

in a file’s provenance, the data that log2timeline provides may not be entirely and obviously

valuable. Therefore, it is necessary for someone interested in such data to apply filters in

order to avoid extraneous information, as well as employing other tools to aid them in quickly

finding the information of interest, such as a file’s metadata.

A useful tool for automating the task of pulling any relevant metadata from a file is

exiftool [13]. Exiftool is a Perl library and command line application, and allows the user to

view and edit the metadata on a number of files. Due to its ability to modify metadata as

well as read it, this tool is usable as a means of obfuscation to thwart examiners. It works

on a plethora of metadata formats, including: EXIF, GPS, IPTC, and many others. If this

tool fails to pull the relevant metadata from a file, the metadata most likely is not present.

The metadata of a file may often lack the information an examiner is searching for. The

system’s registry is invaluable for filling in any gaps.

Harlan Carvey created a tool, RegRipper , that makes gathering data from different

hive files within the registry much easier than manually parsing them[6]. For example,

the RegRipper plugin auditpol.pl extracts audit policy information from the registry

hive. Another useful pluggin, samparse , extracts user and group configuration/account

settings from the SAM hive.

If the examiner is interested in USB devices, RegRipper allows for the extraction of

relevant information from the system hive. The usbstor plugin allows them to determine

the installed external devices, as well as the date and time at which this took place, iden-

tifying the device by serial number. They then use the mountdev plugin to tie the device’s

serial number to a drive letter, or even a device model name. The usbdevices plugin is also

valuable for determining the last write times of the USB devices.

Other useful plugins give the user the ability to see various data related to the network

12

www.manaraa.com

cards, and connections made on the system of interest. The networkcards plugin provides

information on the networking interfaces present on the system at the time of image capture.

If the wireless access points the system connected to are of interest to the investigation, then

the ssid plugin obtains the SSID of the wireless access point (WAP), the MAC address,

as well as when the system last connected to this WAP. If more in depth information is

desired in regards to the WAPs, the networklist plugin is capable of filling in any gaps. It

is important to note that the time zone is factored into these outputs, which often creates a

discrepancy between the last write date/time and the last connected date/time.

An examiner needs confirmation to prove that a file originated from a web browser. It

is possible to employ the histories of the various web browsers installed on the system to

accomplish this. NirSoft produces a number of tools that enable quick and simple extraction

of this information, such as the MZHistoryView [27] tool that enables the extraction of the

Fire Fox browser’s history. The NirSoft tools present the web sites visited, as well as the

dates and times at which these visits occur. Unfortunately, this information is not presented

in chronological order, and the user must remedy this manually.

When activity occurs within a system as a result of the presence of a malicious file,

examiners often look to the network’s firewalls for external verification of the data found

within the system of interest. Keeping track of this information, and picking out data that is

potentially malicious is a difficult task. A tool called VisualFirewall[16] attempts to facilitate

examiner’s efforts by providing visual representations of the various activity within a firewall.

It provides four separate views that help narrow down the myriad of information present so

that an examiner can prioritize resources towards what is important to their investigation.

This data helps examiners learn about user interactions with the file post-arrival, or the file’s

original source.

13

www.manaraa.com

2.4 File Provenance Maintenance Systems

There are many tools related to the tracking and gathering of file provenance. The goal

of some of these tools is to create a system that monitors all file provenance on the host

machine. These systems are known as provenance maintenance systems, and they run in

the background of the system, doing what is needed to account for provenance data while

requiring no input from the user besides their normal computer operations. For example,

the Provenance Aware Storage System (PASS) “automatically collects, stores, manages, and

provides search for provenance”[25]. In order to accomplish this task, it maintains provenance

in memory and on disk. When dealing with a disk, the primary concern a forensics analyst

has is the references files have between one another. In memory, elements such as pipes and

sockets come into play and help determine how provenance is created.

Unfortunately, PASS has some shortcomings. It is unable to automatically collect opaque

provenance, which is defined as data originating “from a non-PASS source, such as a user,

another computer, or another file system that is not provenance aware” [25]. It also results

in substantial overhead when dealing with large files. In one of the scenarios presented this

processor consumption overhead was a large as 232.41%. Space consumption is also a major

issue with this implementation, as simply deleting 24 KB of data resulted in 3486 KB in

PASS overhead.

Sultana and Bertino[30] propose a system called FiPS as an alternative to the domain-

specific approach used by PASS. In their words,“The fundamental problem with domain-

specific approaches is that the data object and the provenance are managed by two separate

data management systems”. Not only does FiPS implement the functionality of PASS, it also

allows for the re-creation of files created using undocumented methodologies. This is a very

useful feature, as scientists and engineers often spend hours trying everything imaginable to

solve a problem, only to quickly forget the steps taken to generate this solution. With FiPS in

14

www.manaraa.com

place, these steps are recorded for later review and documentation, allowing for replication of

the methodology. FiPS avoids the overhead associated with system call tracing, the strategy

used in PASS, by enacting an implementation that places itself between the “Virtual File

System (VFS) and any other file system which results in space and time efficiency” [30].

All of these systems provide valuable forensic data, and enable the quick determination of

how a file arrived on a system, in addition to its relationship with other files. Unfortunately,

these systems require installation on the host machine in order to enable them to keep track

of provenance. They must be in place while the actions of interest occur, to allow for live

observance of the relevant system calls and file interactions that allow for the creation of

relationship and origin databases. This type of system is impractical when dealing with a

system that is not within a corporate, government, or scientific environment. If a computer

does not have one of these systems installed during the time of the incident, then there is

no relevant evidence for examiners to use. Most information systems do not come with file

provenance backbones pre-installed. Therefore, systems that allow for provenance gathering

from a data source that did not have any assisting provenance software in place are essential

for certain applications, such as criminal cases.

OPUS, or Observed Provenance in User Space, attempts to solve this by creating a prove-

nance system that is able to be dropped into any existing system to capture provenance with

minor additional overhead/complication[28]. OPUS also accomplishes runtime context col-

lection, allowing for more detailed provenance models. Instead of just focusing on major file

system operations like existing models, it captures all operations allowing for more detailed

models. This is accomplished by intercepting and capturing provenance at the C library

level through overriding the application symbol table. OPUS also introduces the Prove-

nance Versioning Model (PVM). PVM provides a more formal view of important operations

and allows for the abstraction of I/O semantics, which enables clear understanding despite

differences in various operating systems. This type of functionality is important in a world

15

www.manaraa.com

where many file system entities are accessible simultaneously.

There are many provenance systems available that track activity on a system in real

time, ensuring that there is a thorough log of all activity within a system. It is important to

note, however, that most of these systems do not try to ensure the validity of the provenance

they capture through securing the provenance information. Securing provenance is a critical

endeavor, as provenance information is often put to use in determining guilt or innocence in

criminal cases. Researchers attempted to solve this by creating a provenance-aware system

prototype that focuses on ensuring the validity of provenance [9]. In this study, the capture of

provenance occurs at the application layer. Through thorough controls, the software ensures

that no one is able to add or remove provenance information, preventing undetected rewrites

of history. Trusted auditors verify provenance information, which is available in a format

that makes it easy to determine if alterations are present. Data writes are put to use for the

purpose of tracking this information, as they are far less computationally expensive to track

than data reads due to the quantity present in day to day user operations.

2.5 Automating Digital Forensics

Many of the forensic tools discussed in Section 2.3 allow examiners to retrieve data from

a disk image. However, these tools do not find evidence for the examiner. Instead, they

retrieve all files and data from the disk, as any of it is potentially relevant. The examiner

must then parse through all of this information, in order to find the pieces that are applicable

to the investigation at hand. Tools that automate the time consuming process of finding

pertinent evidence are extremely valuable. This is possible by locating files relevant to the

investigation, optimizing data organization and presentation, and by creating a time-line of

activity on the system.

One of the most difficult tasks for an examiner is determining what files within an image

are of interest to the investigation at hand. The examiner must spend a great deal of time

16

www.manaraa.com

parsing through potential sources of data, until finding something that is valuable. This

task is more easily accomplished by examiners with more experience, as they are adept at

finding other relevant files based on the data discovered thus far. Fortunately, tools are now

available that facilitate this task, and help to decrease the time required to accomplish this

process. Autopsy, or TSK, suggests additional searches based on items already marked as

evidence[4]. These evidence markers help to create a target definition, stored as an object.

Using these target objects, TSK searches for relevant evidence using various criteria provided

by the examiner.

The examiner uses this to search for evidence that relates to the time field of the object,

or the object’s application type. Carrier [4] also developed a system that analyzes outliers

in order to detect files that are out of place with the rest of the data. For example, root

kits or other attack tools would be considered outliers. Discovering out of place files in this

manner greatly aids the forensic examiner’s ability to quickly process the data presented

to them. The process behind discovering these outliers involves using file attributes to

determine whether a file is abnormal or not. Unfortunately, Carrier himself states that since

the multiple attribution method also results in some hidden files being missed, it is difficult

to draw conclusions on the effectiveness of his method of outlier detection.

A 2010 study by Margo and Smogor [20] reinforces the notion that automated analysis

is plausible. After finding that the semantic attributes necessary to perform advanced file

searches were exorbitantly difficult to extract, they decided to use file provenance to find

files placed in arbitrary locations. They were able to discover the relationship between files

and processes by examining their location relative to one another, and the frequency with

which they were accessed. This provenance data is fed into a machine learning algorithm

that classifies the files by semantic attributes, including file extensions, through prediction.

The results of the study showed that it was possible to predict the extension of a file based

on its provenance data.

17

www.manaraa.com

Data organization and presentation is an important part of the forensic process that

greatly expedite or debilitate data gathering depending on how well it is implemented. One

important facet of data presentation is the ability to generate a report on the information

that is present. Pyflag has the ability to provide automated reporting due to the higher level

analysis and extraction abilities provided by its scripting language, PyFlash [11]. This tool

has already proven very capable, as it was the primary tool used in the Digital Forensics

Research Conference (DFRWS) Forensic challenges in 2007 and 2008.

A more clear and concise view of relevant data makes is easier for specialists to quickly

parse through information that aids in their investigations. Reduced workload for examiners,

as well as more parsable information means that relevant evidence is found quickly. The

FACE tool[7] does just this, as it does a better job of presenting the forensic data than

most tools that are currently available. Its primary focus is correlating forensic data on the

file-system with data within the memory, as well as the network capture. The ability to

correlate data within the computer to information transmitted over the network is crucial,

as it is easy to spoof source information, such as a MAC address. It also helps to prove that

the computer the file was found on was indeed the original source of the file and not simply

a recipient.

Ramparser, a tool for linux memory analysis is built to feed directly into FACE. It adds a

number of features that were not available in automated forensics before the development of

this tool. These include additional process functions such as identifying running processes,

and how they were interacting with the stack. Ramparser also allows for identifying files

that were open at the time of the image capture, as well as libraries that were shared. Lastly,

it automatically collects information related to open sockets, and the related protocols that

are being used to transmit data on those sockets.

Time lines are another visualization aid that make it easier for forensic analysts to under-

stand what is happening on a system. It is possible to create time lines by hand; however,

18

www.manaraa.com

it is far more efficient to have software available that automates the creation of these time

lines. The advent of time line software began with a tool called Zeitline [3] in 2005. The

purpose of Zeitline is to better organize the data present on a dead image. Encase, TSK,

and FTK already gather this information, but the creator of Zeitline argues that it is not

presented in a fashion that is useful for determining a sequence of events. Zeitline attempts

to solve this by allowing examiners to import events, which are then grouped, filtered, and

presented in a manner more indicative of a time line or sequence. log2timeline expands on

Zeitline’s functionality

Log2timeline is currently the most commonly used timelining tool, along with its powerful

backend, Plaso. Plaso comes with 5 tools that are useful in forensic analysis. The first,

image export, is useful for exporting file content from an image. It does this based on search

criteria provided by the user, simplifying the image search process. The next tool it contains

is log2timeline, which is the primary time line visualization aid. The third is called “pinfo”,

and it allows the user to get info from a plaso storage file, created by log2timeline.

Plaso files contain information on: when and how the tools was run, information gathered

during the pre-processing stage, metadata about each storage container or store, what parsers

were used during the extraction phase, parameters used, how many extracted events are in

the storage file, the count of each parser, if there are tagged events, what tag file was used,

what tags have been applied and count for each one, and if analysis plugins have been run,

an overview of which have been run and the content of the report. The fourth tool is “preg”,

and is used to parse registry information off of a windows image. The last tool, “psort”,

enables automatic analysis on plaso file contents as well as sorting and filtering.

The information provided by log2timeline still has extraneous and overwhelming data

that the examiner is not interested in. Due to this, any means of better organizing the data

present is a welcome improvement. The data is presented in CSV format, allowing the user

to open the document in excel to aid viewing; however, this does little to aid the informa-

19

www.manaraa.com

tion inundation that the user is facing. A tool created by Derek Edwards called Tapestry

attempts to remedy the situation [9]. Tapestry organizes data by month, day, year, or hour

and hides extraneous data until the user wishes to expand upon it. This greatly helps with

the information overload that occurd with log2timeline. Beyond these basic capabilities, the

program also summarizes any changes in MACB records, which show access, modification,

ownership, and creation times. This makes it easy to see any interesting behavior, such as

file modification or movement. The program enables the user to create custom highlighted

groups based on system activities such as USB mounting. These highlighted groups sim-

plify parsing the information at hand for related actions. To top things off, Tapestry even

summarizes the activities occurring within these groups.

2.6 Summary

A file’s provenance is its history. This consists of the various users who owned the

file, the times at which various interactions occurred, and the methods used to facilitate

ownership and interaction with the file. Ownership and interaction with the file have a

direct relationship. If a user edits the file, they now have ownership of it. An examiner

interested in a file’s provenance is interested in all of the ownership inducing interactions a

file experiences, as well as more nuanced interactions such as simply transmitting or opening

the file. This information is useful for facilitating anything from criminal investigations to

the scientific process.

There are several sources of provenance data. The most common source associated with

provenance is a file’s metadata. Information is also available in the system registry, the

various browser’s installed on a system that the file was found on or traveled through, and

proxies and firewalls. A number of tools exist that enable the retrieval of this information.

FTK, TSK, and EnCase enable the mounting and creation of images, as well as data retrieval.

log2timeline collects time stamped information from throughout the system, and aggregates

20

www.manaraa.com

it into a manageable format. Exiftool pulls the metadata from files. RegRipper and its

associated plugins allow users to easily access information within an image’s registry. NirSoft

provides a suite of tools that extract the history from browsers. Through combining these

tools, an examiner is able to rebuild the provenance of a file.

The most commonly employed provenance tracking programs are File Provenance Main-

tenance Systems. These systems rely on live tracking of a system’s activities. They record

any interactions with the files on the system, building a thorough provenance record for all

the files contained within. Due to their reliance on live tracking, as well as their dependence

on the system’s memory, they are not useful for rebuilding provenance for files located on

a system image. Many tools available today automate forensic processes, but none of them

enable the automated extraction of provenance from a dead source.

21

www.manaraa.com

3. Digital Forensics File Provenance Generation

This section first describes AutoProv in broad terms, giving the reader an overall idea

of its structure. Following that, it provides a more technical and in depth explanation of

the software. This begins with the overall structure of each major piece of software used

in the design: DataGather.py, and DataProcess.py, both written in python. Within each of

these sections, the overview elaborates on specific pieces of data and the processes involved

in gathering and parsing them.

3.1 Overview

There are many tools currently available to aid examiners in determining activity within

system images. This software simplifies analysis by gathering information for the examiner,

and providing it in a useful and readable format. Unfortunately, there are no software

packages that automate the process of using these tools to aid the examiner in determining

where a file has come from, and what activity is directly related to the file. This thesis

presents a proof of concept tool that provides an initial prognosis of what enabled the file to

arrive on the system as well as partial activity of the file post arrival. The software details

the reasoning behind these provenance theories to the examiner, along with all of the tool

outputs leading to this conclusion. The examiner is then able to use this information to

determine where they should look further to verify the findings of the software.

The AutoProv system, shown in Figure 2, first runs a suite of tools in different configura-

tions, and outputs the results of these iterations into text files. A folder encapsulates these

text files, using sub-folders for information that pertains to particular users found within

the image. Once these tools are run, by executing DataGather.py and providing it with

the image and file of interest, DataGather.py creates the folder for later use. The examiner

then runs DataProcess.py on the folder DataGather.py creates. DataProcess.py looks at all

22

www.manaraa.com

of the data within this folder, and attempts to determine the origins of the file of interest

within the image. It accomplishes this by looking for indicators that an examiner often uses

to determine the origins of a file. These origins could include local creation, a web browser,

a USB drive, etc. The software informs the user of the indicators present, and they draw

their own conclusions and determine how to best tailor their analysis from that point on.

DataProcess.py inserts relevant pieces of this information into time line format to aid the

examiner in prioritizing data analysis. The examiner then verifies this information by look-

ing at the data DataGather.py provides, as well as whatever other sources are necessary for

verification purposes.

In order to facilitate the readability of the software, both DataGather.py and DataPro-

cess.py use a shared library called AutoLib.py. This library contains functions both Data-

Gather.py and DataProcess.py use. The DataGather.py and DataProcess.py scripts are

primarily a series of function calls, and the utilization of those calls. This provides a general

functionality map to the reader. If the reader wishes to obtain a more in depth understand-

ing of how the code is accomplishing its objectives, AutoLib.py contains the details of what

each of the functions is doing.

The output this software provides is correct the majority of the time, as long as the

necessary data is salvageable from the dead image. For example, if the Created Date is not

salvageable from the metadata of a file, this affects the accuracy of this software’s prediction.

In this situation, more analysis by the examiner is necessary to verify the results. If enough

pieces of data are missing, the software’s output is not representative of the actual origins of

the file. This tool is meant to be an aid, not a substitute for an examiner. Figure 2 provides

a summary of the structure of AutoProv.

23

www.manaraa.com

Figure 2: AutoProv Project Structure

3.2 Data Gathering (DataGather.py)

The data gathering component of this software occurs within one script: DataGather.py.

The purpose of this script is to automate the many tedious tasks the examiner must often

undergo when attempting to determine the provenance of a file. It also ensures that all of

the data gathered is in a directory format that DataProcess.py is expecting, and therefore

able to process and use effectively.

The various different software iterations result in different granularities of time data.

Some of the results are within microseconds, while others are days apart. A summary of this

information is available in Table 2.

24

www.manaraa.com

Table 2: Temporal Granularity

Target Source Granularity

Registry last modified times NTUSER.dat microseconds
Recent Documents NTUSER.dat > days

File MAC times File of Interest seconds
History Entries Browser History Files seconds

USB Key SYSTEM seconds
User/Group Information SAM seconds
CurrentVersion subkey SOFTWARE seconds

After installing the required software and making the recommended path configuration

modifications, the examiner need only supply the script with the location of the image, along

with the name of the file of interest. At this point, the Data Gathering software mounts

the image locally as a read only drive. DataGather.py mounts the image as read only, to

ensure that neither the software nor the examiner accidentally modify any of the data/files

present on the image. Ensuring the mounted image is read only also prevents any changes

to last accessed times. This helps maintain the validity of the results for use in a court room

setting.

To mount the image, the Data Gathering software needs to know the start block of the

image of interest. It obtains this information by running mmls on the image, and routing

the output to a text file. The text file is then parsed to find the start block of the first

NTFS partition within the image. Simply looking for the string “NTFS” within a line in the

mmls output allows the program to find the start block of the NTFS partition. DataGather

also ensures that a start block for an NTFS partition has not already been found, as this

would result in that partition’s start block being overwritten with the second partition’s

start block. The first partition is the one of interest, as this contains the registry hives and

user directories. DataGather assumes the block size is 512, as this is almost always the case

by tradition. Once this information is gathered, the “mount” command is used to locally

mount the image.

25

www.manaraa.com

Once the image is mounted, DataGather then determine the location of the file of interest.

In order to accomplish this, the find command is run on the image folder (the place where the

image was mounted). The results are stored in a variable, which is then read and stripped of

white space. The file’s name and location are then stored within a text document for later

use by DataProcess.

After discovering the location of the file, DataGather.py obtains the operating system

version and installation date. This is useful for tailoring tools to a specific operating sys-

tem version. It also allows the examiner to know that a file’s creation date is completely

out of scope for having possibly been created on the image it is residing on. This is ac-

complished using the winver plugin for RegRipper . The data of interest is contained

within the SOFTWARE hive. While winver does contain the operating system version,

DataGather.py simply looks at the directory structure leading to the SOFTWARE hive.

Based on this directory structure, it is able to determine what version of Windows is run-

ning. If the structure looks like: %SystemRoot%/System32/config/SOFTWARE, then

the software knows it is dealing with a Windows 7 or later operating system. On the other

hand, a structure of %SystemRoot%/system32/config/software means it is dealing

with Windows XP. The boolean variables representing Windows 7 and beyond, and Windows

XP, are set to true or false depending on the operating system version, in order to properly

direct other programs that interact with the registry.

With the location of the file itself ascertained, the program seeks to determine if there

might be a torrent version of the file. Whenever a user downloads a file using torrenting

software, the user must first download a torrent file, which aids the torrenting software in

determining how to download the file of interest. This torrenting file is usually just the name

of the file with “.torrent” attached to the end. For example, if we were torrenting a picture

named “flowers.jpg”, the torrent file would be called “flowers.jpg.torrent”. Therefore, in

order to determine if a torrent file related to the file of interest is present on the system, all

26

www.manaraa.com

that DataGather.py needs to do is run the find command on the file of interest’s name, with

“.torrent” appended to the end. If a file is found, then there is a very high probability that

the source of the file was torrenting software such as FrostWire.

One of the most useful sources of file provenance information is a file’s meta data. This is

the next piece of information DataGather obtains. The exiftool software accomplishes this,

as it is able to glean metadata from nearly any file type, if that information is available.

Therefore, all DataGather needs to do to obtain the metadata is to run exiftool on the file

of interest. This information is routed to a text file for later use by DataProcess.

After obtaining the file’s metadata, DataGather pulls the dates and times relative to

the times the file was interacted with on the system. This information is contained within

the ctime atime and mtime [17]. These dates/times are compared by the processing

script to gain a great deal of information about the file, and it is therefore important to pass

this information along. To gather this information, the gather script simply runs the “stat”

command on the file, and outputs the results to a text file. The results are in an easily

parsed format, clearly labeling the information of interest.

Now that the metadata has been captured, we are interested in obtaining the last write

times of any registry keys that may be useful, as well as any pertaining values. This is done

using log2timeline, along with various filters. The filters are used to restrict log2timeline,

preventing it from analyzing the entire image. While this does reduce the information

available to DataProcess.py, it is necessary to greatly reduce the time necessary to analyze

an image. The majority of information relevant to the provenance of a file is found within

%USERPROFILE%/NTUSER.dat, as well as the various folders and sub-folders within

the Application Data folder (%APPDATA%), and the folders and sub-folders within Local

Settings, so not much, if anything, is lost due to this restriction.

Each user’s NTUSER.dat file contains a plethora of data showing their activities on the

system. The application data and local settings folders contain a variety of user specific

27

www.manaraa.com

settings and configuration files. These often contain information on when file’s are accessed

by various executables within the system. Due to the file structure being different on modern

machines (Windows 7+) than it is on Windows xp, the filter contains accommodations for

the different operating system file structures in the form of “or” statements, to ensure that

log2timeline is directed to the correct location.

It is also important for the examiner, as well as the tools being used, to be aware of all

the users present on a system. DataGather either checks the Users folder or the Documents

and Settings folder, depending on the version of Windows, to determine what users are

present on the system. The program is not interested in the default users that are present

on all systems, so those users are filtered out along with unrelated directories. This includes:

“All Users”, “desktop.ini”, “Default”, “Default User”, “Local Service”, “NetworkService”

and “Public”. Once this list of users is placed within an array structure, all of the users of

interest are printed to a text document so that DataProcess is aware of their presence.

In order to better separate information as it pertains to each user on a system, each user

is given their own sub directory within the overarching directory dedicated to each iteration

of DataGather. The first thing that is placed into each of these user directories after they

are generated is the documents and drives they have most recently interacted with. This

is accomplished using the RegRipper plug in: recentdocs tln. This plugin is run on the

NTUSER file of each user present on the system.

The next thing DataGather obtains is the system’s USB connection history. This in-

formation includes the first date/time that the system interfaced with the USB device, the

most recent time the system interfaced with the USB device, and the serial number of the

device. The date’s and times of the various USB connections are valuable for determining

whether or not a USB device was the source of the file of interest. Especially in situations

where the file is malicious, if a USB device is the file source, additional usage won’t occur.

Therefore it is reasonable to assume that the last connection date of the USB device would

28

www.manaraa.com

be reasonably close to the date that the file was first seen on the system. This informa-

tion is obtained using the usbdevices plugin for RegRipper . It is contained within the

%SystemRoot%/System32/config/SYSTEM hive.

Another highly important piece of information gathered from the system is the user

and group data. This data includes when each user account and group were created, the

respective permissions of each of those entities, as well as the last time each user logged into

the system. This information is highly valuable when attempting to find who allowed the file

to get to its current location, and how it originally arrived on the system. The information is

gathered by running the RegRipper samparse plugin on the SAM hive of the registry.

An important piece of information to facilitate the parsing of the log2timeline logs is the

timezone that the image uses. log2timeline gathers information in GMT/UCT, while some

other sources of forensic information are relative to the system time. In order to correct

this imbalance, the timezone that the system was in prior to the image being taken must be

known. Luckily, RegRipper has a plugin that looks inside of the SYSTEM registry hive in

order to find this information. Therefore all DataGather must do is run the timezone plu-

gin on the SYSTEM hive, and output the results to timezone.txt, and DataProcess handles

the rest.

3.2.1 Browser History

The next item of interest is the user’s web history. File’s are commonly downloaded from

web pages, and therefore it is important look at the various web pages a user has visited.

DataGather begins by processing Chrome’s history. This is done using a piece of software

aptly named “ChromeHistoryView” [26]. DataGather locates the chrome history file, assum-

ing it is in its default location, and provides it to ChromeHistoryView. ChromeHistoryView

is designed to be run on the Windows OS, so Wine is used to allow it to run in the Linux

environment. The output of this program is pushed into a text file for later use by DataPro-

29

www.manaraa.com

cess. Similar methods using various Nirsoft tools allow for the attainment of the rest of the

various browsers’ history data.

The Nirsoft browser history extraction tools work exceptionally well for the majority of

browsers. Unfortunately, their Firefox history extraction tool, MZHistoryView [27], did not

perform as well as was necessary for the successful implementation of this thesis. For this

reason, a Firefox history extracting python library was added to the scope of this thesis. The

library uses SQL calls to navigate through the various tables present within the places.sqlite

file that contains Firefox’s user history for versions 3 and beyond. There are two tables within

places.sqlite that are of interest to this thesis, for the purposes of extracting a sequential

history of the user’s browsing. These are the moz historyvisits and moz places tables, which

have the structure shown in Figure 3.

Figure 3: Fire Fox Table Relationship

Figure 2 shows the relationship between the two tables of interest within places.sqlite.

There are many more tables within this database, but these are the primary two of relevance.

Moz historyvisits contains the sequential Firefox history of the user. The actual websites

they visited are encoded as a place id. This place id is used as a reference to an entry within

moz places that contains the url of website visited. The moz historyvisits table also contains

the full date and time of the visit. This information is encoded in epoch format [10].

30

www.manaraa.com

FFhistory.py converts this information into a array of history ojects that contain the

address visited, the date of the visit, and the time of the visit. This is accomplished using

the sqlite3 python library, which allows python to make SQL calls to an SQL table. The

SELECT command is used to pull all of the information off both tables, which is returned

in array format. The information of interest is then pulled using simple calls to the portions

of the array that are of interest. Once the date/time of the entry is obtained in epoch

format, the time library is able to convert it into GMT, a much more useful format. The

various entries within moz places are searched for each of the relevant indexes found within

moz historyvisits, and the addresses discovered are added to the relevant entries. By the

time all of the entries found within moz historyvisits are accounted for, the program has

produced a full browsing history based on the user’s places.sqlite database file.

3.3 Data Processing (DataProcess.py)

The data processing script receives all of the information it needs from a folder created by

the data gathering script. Figure 4 shows this relationship. Once the data gathering script

has run, all the examiner needs to do is execute the data processing script on the folder

that was created by the gathering script. Once the script is done analyzing the various

tool outputs produced by DataGather.py, it outputs any correlations as well as a time line

showing many relevant events that helped determine their validity.

There are a number of boolean variables that DataProcess.py uses to track correlations

it wishes to inform the user of. These variables and their meaning are overwhelming, so a

summary is available at the end of the section. The time line is built using a doubly linked

list. The nodes within the list are a class structure called an event. The event structure

contains the year, month, and day of the time line entry. It also contains the hour, minute,

and second of the event’s occurrence. Any further granularity is removed from the event.

Lastly it contains the description, which is the message printed to represent the event, and

31

www.manaraa.com

Figure 4: Output Directory Structure

pointers to the next and previous event nodes.

The first thing that the data processing script does, is open up the text file nameloca-

tion.txt, provided by data gather, that contains the file of interest’s name and location. It

then parses the contents of this file into two respective variables, filename and location, for

later use.

The program also checks namelocation file to determine if a torrent version of the file

exists on the system. If a torrent file exists, DataGather places the location of the file inside

of the namelocation.txt file for the purpose of convenience in parsing. If a torrent file is not

32

www.manaraa.com

found, then the third line of the namelocation text file is empty.

Next, the script opens the text file, meta.txt, containing the metadata of the file. This

data is more difficult to parse, as the format is not always predictable. Based on the data

that exiftool is able to find, it changes the output it produces. Therefore, instead of simply

going line by line through the text file, the parse meta function looks for specific strings

within each line that are indicators that the information is present. Each line is stripped of

extraneous blank space, and then split using colons as the parameter. This leaves a number

of extraneous entries in the resulting array, which are removed. The function is then free to

look for the strings “Creator”, “Last Modified By”, and “Create Date”.

Through locating these strings, the function detects that some piece of the information

of interest is present in the line. More blank space is stripped away from this line of value

and it is split using the space character as a modifier. Unnecessary characters are removed.

DataGather.py retrieves individual values of interest from the resulting array. It modifies

any dates and times into a standard format used for comparison purposes with the dates and

times produced by other tools. The format used for dates is year:month:day and the format

for time is hours:minutes:seconds, with any extraneous zeros removed. For example, if a

minutes value is represented by “05” minutes, it becomes “5” minutes for ease of comparison

and casting to integers. With the metadata parsed, the script is free to determine if the

file’s creator is the same user who edited the file. If this information is available, and the

values are different, then it is known that a different user modified the file than the user who

created the file. This information is reported to the user.

The file’s date of creation as well as the date of modification, are valuable for the time

line this tool produces. At this point, the tool takes the information from the metadata, and

parses it into the generic Event class structure format, enabling its addition as a node to the

linked list time line. A function within AutoLib.py, insertEvent, takes care of adding these

nodes chronologically to the time line.

33

www.manaraa.com

When nodes are added to the time line, insertion must occur at the proper position within

the linked list structure. The insertEvent function accomplishes this by first checking if the

list has a head node. If there is no head node, the new entry becomes the head of the list.

Otherwise, the function iteratively checks whether each event in the list is greater than the

new event. The isGreater function accomplishes this comparison by iterating through the

values within the event structure, starting with year and ending with seconds, to determine

which date and time is more recent. If the new event’s date and time is greater, then the

function places it after the current comparison node, and the isGreater function returns true

allowing this to take place. If isGreater is true, the function checks the next node in the

same manner as the previous one unless there is no next node. If there is no next node, the

new node becomes the tail end of the list.

If the new node occurs before the node with which it is compared, then it is inserted

before the comparison node. To accomplish this, the “next” pointer of the node before the

current comparison node points at the new node, and the comparison node’s “prev”, for

previous, pointer also points at the new node. The new node’s prev and next pointers then

point at these two nodes respectively. Using this insertion criteria, a chronological time line

of events forms. Figures 5 and 6 show how this insertion method works.

Now that the metadata and the basic location information of the file are obtained, more

detailed system information is desired. In order to obtain this information, DataProcess

looks to the wininfo.txt file. As mentioned in the Data Gathering section, this file contains

information on what type of operating system we are dealing with, as well as the date that

the operating system was installed. DataProcess parses this file by calling the parseWinInfo

function from the AutoLib library. This function grabs the information of interest, and

reformats it to the same format as the other date/time values it is compared to.

First the function replaces the months with their respective numbers. For example,

‘Jan’ must be replaced with the number 1. The function uses a dictionary to accomplish

34

www.manaraa.com

Empty List

Most Recent Entry

Figure 5: Time Line Insertions

35

www.manaraa.com

Oldest Entry

Middle Entry

Figure 6: Time Line Insertions Continued

36

www.manaraa.com

this. The three pieces of information the function pulls from the file is the “ProductName”,

which is the version of windows, the “CSDVersion”, this is the last update applied, and the

InstallDate, which is self-explanatory. This information is all stored within a WindowsInfo

class structure, so that the information of interest is easily pulled whenever necessary.

Now that we have the metadata for the file, we look to see what users are present on

the system. This information is held within the users.txt file generated by DataGather.

DataGather has already done the majority of the work for us here, so all that is necessary

is to iterate through the list of users, stripping off the new line character and placing each

user name into an array. The first thing we use these user-names for is to determine if any

of the users on this system are the user present in the “created by” section of the metadata.

If this is true, a boolean is set that ensures the examiner is aware of this correlation.

The next items of interest are the ctime, mtime, and atime. This information is

already present in timestamps.txt, thanks to DataGather. DataProcess pulls this informa-

tion from the text file, and places it into the Timestamp class structure so that relevant

information is easily available. Once again, the structure of the timestamps require alter-

ation so that they match those of the other software in use. The parsetimestamps function

within AutoLib does the heavy lifting here, with assistance from the timestampfix function.

parsetimestamps searches for relevant strings that let the software know the information of

interest is present, while timestampfix alters the times and dates found so that they are

comparable to the times and dates presented by the other software in use. This, once again,

requires replacing characters, removing blank space, and removing extraneous zeros from

the minutes and seconds fields. The ctime is added to the time line as a reference point

to show the user the file’s creation date/time within the greater context of other relevant

events.

AutoProv then examines the time line that DataGather provides from the output of

log2timeline run with a filter pointing it at NTUSER.dat, as well as various application

37

www.manaraa.com

folders, for the various users. Each user has their own set of directories/hives of interest. The

DataGather script uses a filter for log2timeline that checks every user’s useful structures, and

outputs the results to a consolidated text file. Therefore, in order to find anything relevant

within all of these entities, the script need only look within one text file. DataProcess looks

for any entries that involve the file of interest within the generated text file, and appends

them to an array of “relevant entries”.

Whenever a relevant entry is found, its details are placed within an iteration of the time

lineEntry class. This class structure provides the date of the entry, the time of the entry, and

many other descriptive elements generated by log2timeline. log2timeline’s output facilitates

this, as it is in CSV format. Therefore, the script need only separate the values by comma,

and strip away any excess characters, in order to populate the time lineEntry class values.

The first relevant entry is then added to the time line that is provided to the user, so that

the user sees when the file first arrived on the system within the greater context of the other

relevant events.

Following the discovery of all relevant time line entries, DataProcess checks to see if

any of them contain references to program executions on the day of the file’s first arrival on

system. This is done by looking for the first relevant time line entry that involves the file, and

comparing the data of its occurrence to all time line entries that involve program executions.

Program executions are discovered by looking for references to the userassist registry within

the NTUSER registry in the time line report. The userassist logs are updated whenever a

program execution occurs, making it possible to find program executions within a relevant

time span. After finding all program executions that occur within the day of the file’s

arrival, DataProcess then narrows its criteria to programs executed within six hours of the

file’s arrival. The time line entries referencing these program executions, and the user’s who

executed the programs, are pulled and parsed into entries which are then inserted into the

time line created by DataProcess.

38

www.manaraa.com

This process is repeated for any program executions in close proximity to the file’s mod-

ification time. This is important, as the file may have been modified within the system. If

the file was modified within the system, any program executions that may have enabled the

modification of the file become an important part of that file’s provenance

The next step the script takes is to search for when software of interest was run by the

user. The first software it checks for is FrostWire. FrostWire is a torrenting platform that

is used to obtain files, and therefore it is within the scope of file provenance investigation.

There are many other torrenting platforms, but for the purposes of this proof of concept,

only FrostWire is detectable. Once again, the log2timeline results are used to determine if

or when the software was run.

Within the log2timeline results, references to the userassist hive [31] show that the user

ran specific software. Knowing this, the script need only look for a line containing a reference

to “Frostwire.exe”, as well as “winreg/userassist” to determine that the time line entry is

a reference to the user running FrostWire at a particular date and time. The script then

populates an array containing all entries that involve a FrostWire execution. We now know

every occurrence of a user executing FrostWire.

These iterations of FrostWire executions are only valuable within the context of the file’s

arrival on the system. To determine if a FrostWire execution is of value, the DataProcess.py

script checks if any of the executions occurred on the date of the file’s arrival. If they did,

then a relevant boolean variable is set to true, and the event is added to the time line in the

usual manner, further adding to the user’s understanding of the file’s method of arrival.

Another commonly used application for file transfers is Skype. Skype allows two individ-

uals to call one another, and also transfer file’s during the conversation if they wish to do

so. For this reason, DataProcess.py checks for Skype executions in the same way it checks

for FrostWire executions. It looks for “Skype.exe” and “winreg/userassist” in the same line

of the time line file. If it finds a situation where this is true, it logs the date and time of the

39

www.manaraa.com

event. It then compares the date and time of the Skype execution to the file of interest’s

arrival data. If the dates match, a flag is activated. If the events are within thirty minutes

of one another, another flag is activated, further refining the possibility of the file’s arrival

via means of Skype.

This proof of concept focuses mostly on the provenance of Microsoft Word documents.

For this reason, it is important to note the activity of Microsoft Word. Similar to Skype

and FrostWire, executions of WINWORD.EXE found inside the userassist subhive help

determine when Word executions occur. Word executions are once again correlated with the

arrival of the file; however, Word also allows users to create and edit files as well. For this

reason, Word executions are also compared to the creation date found within the metadata,

if a creation date is available. Separate flags are activated depending on whether the file

arrived on the same date as a word execution, or if it was created on the date of the word

execution.

The software also checks for the string “Microsoft/Office” within the display name of

each time line entry. Within Windows XP, any uses of Microsoft office products contain

this string. This helps with determining who interacted with the file of interest, and when

they did so. The string “Removable Disk” is also checked for within the message portion

of each relevant time line entry, as this highlights USB usage within close proximity to the

file’s arrival. This happens when the USB device and the file of interest both appear in the

user’s recently used documents.

Another important string to check for in the message section of relevant time line entries

is “Content.IE5”. This string existing in the message portion of a relevant entry means that

a time line entry that references the file of interest, also references the content.IE5 folder,

meaning that a reference to the file was found within this folder. This reference occurs due

to the file being acquired using Internet Explorer, and based on the results discussed on the

next chapter, it also appears to result from file’s being acquired using Safari on Windows

40

www.manaraa.com

operating systems. This immediately and greatly narrows the possible sources of the file of

interest.

Besides knowing what happened to a file, it is important to know who caused the various

actions to occur. For this reason, DataProcess also checks what users interacted with the

file of interest. This is accomplished by searching the relevant time line entries for any

references to a user that is known to exist on the system. If the user name is found within

the display name portion of the entry, and the user has not already been discovered, then

the user name is appended to the list of users who have interacted with the file of interest.

It is also important to determine whether or not it is feasible for the file to have been

created locally. If the creation date of the file is available within its metadata, the program

compares this date to the installation date of the operating system, obtained by Data-

Gather.py using RegRipper. If the installation date of the operating system is beyond

the creation date of the file, there is no way that the file was created on the system, and

therefore it must have been obtained via some other means. DataProcess.py also compares

the creation date of the file to the first time the file is seen within the system of interest.

If the creation time is within 30 minutes of the file’s arrival on system, this is reported as

this has a high correlation with the file having been locally created. This information helps

drastically reduce the user’s investigation efforts for rebuilding the file’s provenance.

Next, DataProcess.py looks more into determining which users interacted with the file of

interest. The program already obtained a list of users that are referenced within the output of

log2timeline in conjunction with the file of interest. This has a high likelihood of accurately

predicting who has interacted with the file. In order to further reinforce this knowledge,

DataProcess.py looks at each user’s recent interactions, as obtained by DataGather.py using

RegRipper. If any of the recent interactions reference the file of interest, this information

is reported to the user. This serves the purpose of further solidifying the validity of known

information.

41

www.manaraa.com

Another valuable piece of information for determining the source of the file of interest is

the data on various USB connections within the system. This information was pulled via

RegRipper by DataGather.py. DataProcess.py takes this raw text information, and parses

it into a USB class structure. The date and time of the USB’s last connection, as well as its

serial number and device identifier are all obtained and parsed into an easily referenceable

class format. If any of these USB devices were connected on the day that the file arrived,

a correlation boolean is activated, and this information is reported to the user. The date

and time of the USB connection is also added to the time line in order to better put this

information in perspective.

DataProcess.py now attempts to further identify what users have knowledge of the file’s

presence on the system, and may know more about how it arrived. This is determined by

looking at what users were logged into the system on the day that the file first arrived. This

information is obtained from the user and groups information pulled from the SAM hive by

DataProcess.py using RegRipper . The date that each user last logged in is compared to

the date of the file’s arrival on system. If the dates are a match, an entry is added to the

time line and the user is appended to an array of users reported at the end of the program’s

execution.

The next section of DataProcess.py focuses on pulling all of the relevant web history

off of the image of interest. It starts by checking if DataGather.py was able to pull each

user’s chrome history from the image. For each user that has available chrome history, each

entry within their history is parsed into a class structure. Those class structures are then

appended to an array of chrome history entry class structures. A similar method is used to

pull any Internet Explorer history that is available for the system’s user’s. Nirsoft’s Internet

Explorer history viewer also pulls all of the various windows explorer interactions for each

user as well, which helps with rebuilding the file’s provenance. Each of these class structures

is appended to an array.

42

www.manaraa.com

Once the various internet history sources are parsed into class structures, the relevancy

of the individual entries must be confirmed. In order to accomplish this, DataProcess.py

splits the time of the first entry referring to the file of interest, and pulls out the hour of

its occurrence. The program uses this value to narrow the list of web visits to within two

hours of the file’s arrival. This helps to ensure that the browsing history the user is viewing

is relevant to the file’s provenance. The program accomplishes this for each browser type

sequentially, adding the relevant entries to the time line for later output.

3.3.1 Outputs

After all of this information is gathered, DataProcess.py begins outputting it in a user

readable format. The first items of interest provided to the user are the correlations. All

correlation flags are attributed to a meaning, summarized at the end of this section. The

basic meaning of these correlations is conveyed to the user via a string output that highlights

the occurrence of these items of interest. Arrays that are used as truth indicators lead

to additional lines of output for the various users within the system. Once these boolean

correlations are resolved, the program provides the user with the time line created throughout

the various information filtering that took place earlier in the program’s execution. This time

line is referenced when the user wants clarification on the presented correlations, or when

additional information is necessary to acquire accurate file provenance. The correlations

presented to the user consist of several categories, shown in Figure 7.

43

www.manaraa.com

Boolean Correlation Variables

The code example below each variable is simplified psuedo-code, and not the exact code

used to activate the corresponding boolean.

Figure 7: Correlation Categories

difmod

if metadata.creator != metadata.modifier:

difmod = True

44

www.manaraa.com

recentuser

for user in userlist:

recent = recentdocs_tln output

for line in recent:

if filename in line:

recentuser.append(user)

date check

if time line_entry.contains(filename):

relevant_entries.append(entry)

for entry in relevant_entries:

if entry.date == metadata.created_date:

date_check = True

time check

crtime = metadata.created_time

if time line_entry.contains(filename):

releveant_entries.append(entry)

for entry in relevant_entries:

if date_check:

if (entry.time > crtime - 30 minutes) and

(entry.time < crtime + 30 minutes):

time_check = True

45

www.manaraa.com

systemuser

for user in userlist:

if (metadata.creator == user) or (metadata.author == user):

systemuser = True

word create day

if time line_entry.contains("WINWORD.EXE"):

word_entries.append(entry)

for entry in word_entries:

if entry.date == metadata.created_date:

word_create_date = True

word appear day

if time line_entry.contains("WINWORD.EXE"):

word_entries.append(entry)

for entry in word_entries:

if entry.date == file_arrival_date:

word_appear_date = True

word modify day

if time line_entry.contains("WINWORD.EXE"):

word_entries.append(entry)

for entry in word_entries:

if entry.date == metadata.modification_date:

word_modify_date = True

46

www.manaraa.com

officeinteract

if time line_entry.contains(filename):

relevant_entries.append(entry)

for entry in relevant_entries:

if entry.contains("Microsoft/Office"):

officeinteract = True

impossiblelocal

windows_info = winver output

windows_install_date = windows_info.install_date

if windows_install_date > created_date:

impossiblelocal = True

editing

if mtime > file_arrival_date:

editing = True

timelinerelevant removable disk usage

if time line_entry.contains(filename):

relevant_entries.append(entry)

for entry in relevant_entries:

if entry.contains("Removable Disk"):

time linerelevant_removable_disk_usage = True

47

www.manaraa.com

usbdatematch

devices = usbdevices output

for device in devices:

if device.last_write_date == file_arrival_date:

usbdatematch = True

torrentfile

if filename + ".torrent" on system:

torrentfile = True

fwiredatematch

if time line_entry.contains("FrostWire.exe" and

"winreg/userassist"):

frostwire_entries.append(entry)

for entry in frostwire_entries:

if entry.date == file_arrival_date:

fwiredatematch = True

skypedatematch

if time line_entry.contains("Skype.exe" and "winreg/userassist"):

frostwire_entries.append(entry)

for entry in frostwire_entries:

if entry.date == file_arrival_date:

skypedatematch = True

48

www.manaraa.com

skype30min

if time line_entry.contains("Skype.exe" and "winreg/userassist"):

frostwire_entries.append(entry)

for entry in frostwire_entries:

if date_check:

if (entry.time > arrival - 30 minutes) and

(entry.time < arrival + 30 minutes):

time_check = True

samedaylogin

users = samparse output

for user in users:

if user.last_login_date == file_arrival_date:

samedaylogin = True

relevant chrome visits

chrome_visits = ChromeHistoryView output

for link in chrome_visits:

if link.visit_date == arrival_date:

if (link.visit_time > arrival - 2hrs) and

(link.visit_time < arrival + 2hrs):

relevant_chrome_visits.append(link)

49

www.manaraa.com

relevant ie visits

ie_visits = IEHistoryView output

for link in ie_visits:

if link.visit_date == arrival_date:

if (link.visit_time > arrival - 2hrs) and

(link.visit_time < arrival + 2hrs):

relevant_ie_visits.append(link)

relevant ff visits

ff_visits = FFhistory results

for link in ff_visits:

if link.visit_date == arrival_date:

if (link.visit_time > arrival - 2hrs) and

(link.visit_time < arrival + 2hrs):

relevant_ff_visits.append(link)

userinteract

if time line_entry.contains(filename):

relevant_entries.append(entry)

for entry in relevant_entries:

for user in users:

if entry.contains(user.display_name) and (not userinteract):

userinteract.append(user)

50

www.manaraa.com

systemuser

for user in users:

if (metadata.creator == user.display_name) or

(metadata.author == user.display_name):

systemuser = True

systemmod

for user in users:

if metadata.modfier == user.display_name:

systemmod = True

51

www.manaraa.com

4. Experimental Results

Two sets of tests validate the functionality of AutoProv’s ability to recreate provenance on

an image. The first tests, Use Case tests, run through a set of manually generated scenarios.

The second set of tests involve images where the provenance of the file’s are unknown prior

to running the AutoProv scripts. The tool set is run, and then the results are analyzed to

determine there efficacy. The time zone of all dates and time referenced is GMT.

4.1 Use Case Testing

The first set of tests involve a system that is reset to a known good snapshot between tests.

During each test, the user takes deliberate actions that the software adequately responds

to. These tests successfully test the core functionality of AutoProv, without introducing the

unexpected. The time line functionality was not yet implemented as of these tests.

4.1.1 Use Cases

Each use case involves a Windows 7 Service Pack 2, 64 bit, VMWare Virtual Machine

with Google Chrome v. 51, Firefox v. 46, FrostWire v. 1.7.3, Microsoft Office 2016, and

Skype v. 7.25 installed. The six use cases are:

1. A user logs on, creates a Microsoft Word (MW) document, and logs off. Another user

then logs in, edit, and saves the document.

2. A MW document is copy-pasted to the system via NTFS format USB removable drive.

A user on the system then edits and saves the MW document.

3. The user calls someone on Skype, and receives a MW document from them. The file

is then moved.

52

www.manaraa.com

4. The user torrents a MW document using FrostWire, and then edits the MW document.

5. A user downloads a MW document via Chrome, and then edits it.

6. Downloads a MW document using Internet Explorer, and then edits the document.

4.1.2 Use Case Results

Use case one resulted in the following boolean flags:

– difmod - The file was modified by someone other than the creator.

– localuser - The file is in one or more user’s recent documents.

– time check - Relevant time line entries exist referring to the file within thirty minutes

of its creation.

– systemuser - The file’s creator has the same user name as a user who exists on this

system.

– word create day - Microsoft Word is used, within the system, on the creation date

of the file.

– word appear day - Microsoft Word executes on the first day that this file is seen on

the computer.

– editing - This indicates possible file editing while on the system of interest.

From these flags, the examiner easily determines that the file was edited, and that the editing

most likely occurred locally. This is based on the editing and difmod flags, and supported by

the local user flag. In addition, the time check, systemuser, localuser, and word create day

flags show the file was locally created.

Use case two resulted in the following boolean flags:

53

www.manaraa.com

– usbdatematch - A removable disk is used on the same day that the file first arrived

on system.

– time linerelevant removable disk usage - This variable is set if a time line entry

references the file of interest, as well as a USB drive.

– word appear day - Microsoft word executes on the first day that this file is seen on

the computer.

– difmod - Creator and Modifier are different.

– samedaylogin - User’s last logged in on day of file’s arrival. Users are listed.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

The usbdatematch and time linerelevant removable disk usage combine to show that the file

could have originated from a USB device. The word appear day and difmod flags then show

that the file was most likely modified after arrival, using Microsoft Word. The samedaylogin

flag is active, which means that any users who logged in that day are listed, helping to narrow

down the user who connected the usb device. The time check flag is active due to testing,

as the file was quickly transferred after creation for the purposes of this test. Therefore, its

presence is ignored.

Use case three resulted in the following boolean flags:

– skypedatematch - Skype was used on the same day that the file first arrived on the

system.

– skype30min - Skype was used within 30 minutes of the file first being seen on system.

– samedaylogin - User’s last logged in on day of file’s arrival. Users are listed.

54

www.manaraa.com

For the third test, the skypedatematch and skype30min flags trigger to show that Skype is

used within 30 minutes of the file’s arrival. The samedaylogin then lists the user who was

logged in on the date the file arrived, helping the user to discover who allowed the file to

arrive on the system.

Use case four resulted in the following boolean flags:

– torrentfile - A torrent file exists that has the same name as the file of interest.

– fwiredatematch - FrostWire was used on the day that the file was first seen on the

system.

– difmod - The file was modified by someone other than the creator.

– editing - This indicates possible file editing while on the system of interest.

– samedaylogin - User’s last logged in on day of file’s arrival. Users are listed.

– impossiblelocal - The Operating System was installed on this system after the file

was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– word appear day - Microsoft word executes on the first day that this file is seen on

the computer.

The fourth test works as expected, activating the torrentfile, and fwiredatematch flags

to show a possible torrent source. The combination of difmod, editing, time check, and

word appear day flags create a high likelihood of local editing. The user safely assumes none

of these flags were activated by the file’s creation due to the impossiblelocal flag’s activation.

55

www.manaraa.com

Lastly, the impossible local creation flag activates. This lets the user know that the creation

date of the file is earlier than that of the operating system. This dramatically decreases the

likelihood of local creation.

Use cases five and six resulted in the following boolean flags:

– relevant chrome visits - This variable is true if there are any chrome visits within

+ − 2 hours of the file’s arrival on system.

– relevant ie visits - This variable is true if there are any Internet Explorer visits within

+ − 2 hours of the file’s arrival on system.

– difmod - The file was modified by someone other than the creator.

– editing - This indicates possible file editing while on the system of interest.

– samedaylogin - User’s last logged in on day of file’s arrival. Users are listed.

– impossiblelocal - The Operating System was installed on this system after the file

was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

The last two use cases have similar results, as they both test browser history parsing. The

relevant chrome visits and relevant ie visits flags are both active for their respective tests,

so the program provides the user with any web page visits within a two hour time span.

This provides users with insight into the source of the file, especially in this test, as the

file’s source web page contains the name of the file itself on the download mirror. The tool

presents the information in a readable single line format, allowing the examiner to easily

parse the results. The usual login (samedaylogin) and editing (difmod, editing) flags are

active as well, showing the user the file was modified locally.

56

www.manaraa.com

4.2 Real Data Corpus (RDC) Testing

This portion of the testing uses a series of relevant images from the Real Data Corpus

(RDC) [21]. The RDC consists of real world forensic data collected from devices purchased

on the secondary market throughout the world. After mounting the images and locating files

of interest, the data gathering and processing tools were used to recreate the provenance of

the files. User names are changed to a numerical standard in order to protect identities.

User enumerations are reset for different images (user 1 on image 1 is a different user than

user 1 on image 2). The time line portion of the project was complete at this point, allowing

for more complete provenance recreation.

DataGather.py uses correlations and filtering to reduce log2timeline’s output from an

average of several million events to fifteen events or less. This is shown in Figure 8.

Figure 8: Time line Summary (Image 5: File 2)

57

www.manaraa.com

4.2.1 Results

Image 1: File 1

The following booleans are set to True in for the first file of interest, a .doc (Microsoft

Office) file, on image 1. Image 1 is a Microsoft Windows XP machine with Service Pack 1

installed.

– Creator not Modifier - Looking at the file’s metadata, the software sees that the

file’s creator is not the same user as the file’s modifier. This is not a boolean flag, but

the software still outputs this information. The modifier’s name is also provided.

File Modified: 2006:6:19 - 08:36

– datecheck - This boolean is false, as the creation date is not equivalent to the date

the file is first seen on system, resulting in the program noting that it is very unlikely

the file was created locally. The file’s creation date, and the date it is first seen are

both provided to the user.

Creation: 2006:6:8 - 06:34 // Arrival: 2006:6:20 - 11:41:38

– userinteract - A user, user 1, interacted with the file of interest.

Arrival/First Interaction: 2006:6:20 - 11:41:38

– officeinteract - Microsoft Word was used to interact with the file.

Arrival/First Interaction: 2006:6:20 - 11:41:38

– editing - The file appears to have either been edited or copied within the system due

its mtime being much different than its arrival time. The mtime is provided to the

user.

– ie5 content - References to the file exist within Internet Explorer’s Temporary Inter-

net Files (TIF).

58

www.manaraa.com

– The time line includes entries that are not within a time span that infers local creation.

Figure 9 shows a summary of the time line produced by DataProcess.py.

Figure 9: Time line Summary (Image 1: File 1)

Viewing the correlations determined by DataProcess.py, along with the time line is pro-

duces, it is fairly simple to recreate the provenance of this file. It is apparent based on the

datecheck flag that the file probably wasn’t created locally. Combining that with the fact

that there are references to the file within Internet Explorer’s content, it becomes clear that

the file was most likely downloaded. The file was edited at some point based on the creator

not being the modifier, but it probably didn’t happen on this system, as the most recent

59

www.manaraa.com

modifier is not a user on this system. The editing flag is most likely true due to the file being

copied and pasted out of the downloads folder. User 1 also appears to have used Microsoft

Word to view the file of interest, based on the userinteract and wordinteract flags, while not

having edited it due to this user not being the last modifier.

The time line helps clarify this even further, as there is an entire day between when the

file was last modified and its arrival on the system. The time line also shows that the user

opened their browser and navigated to their web mail page as soon as the file arrived. This

leads to the conclusion that the file was most likely collected via web mail, and then the web

history was deleted. Considering the web history resumes 11 seconds after the files arrival,

this is a fair conclusion to make. The user also appears to delete their web mail’s history,

further reinforcing the conclusion that they were attempting to cover up their tracks.

Provenance Narrative

Someone creates the file on another system, and User 1 downloads it via a web mail host

on 2006:06:08 at 11:41:38 using Internet Explorer. User 1 then deletes their web mail history.

Next, they move the file from the downloads folder to its current location. At some point

after arrival, it is not clear when, they also view the file using MW.

Image 2: File 1

The following booleans are set to True in for the first file of interest, a .xls (Microsoft

Excel) file, on image 2. Image 2 is a Windows XP machine with Service Pack 2 installed.

– Creator not Modifier - Looking at the file’s metadata, the software sees that the

file’s creator is not the same user as the file’s modifier. This is not a boolean flag, but

the software still outputs this information. The modifier’s name is also provided.

– datecheck - This boolean is false, as the creation date is not equivalent to the date

the file is first seen on system, resulting in the program noting that it is very unlikely

60

www.manaraa.com

the file was created locally. The file’s creation date, and the date it is first seen are

both provided to the user

Creation: 2005:12:31 - 08:22 // Arrival: 2009:11:16 - 10:39:45

– userinteract - A user, user 1, interacted with the file of interest.

Arrival/First Interaction: 2009:11:16 - 10:39:45

– officeinteract - Office was used to interact with the file.

Arrival/First Interaction: 2009:11:16 - 10:39:45

– impossiblelocal - The Operating System was installed on this system after the file

was created.

Creation: 2005:12:31 - 08:22

– editing - The file appears to have either been edited or copied within the system due

its mtime being much different than its arrival time. The mtime is provided to the

user.

– usbdatematch - A removable disk was used on the same day that the file first arrived

on system.

USB Connected: 2009:11:16 - 01:48

– skype30min - Skype was used within 30 minutes of the file first being seen on system.

Skype Execution: 2009:11:16 - 10:27:51

– samedaylogin - User 1 and User 2 have a last log in date that is the same day the

file arrived on the system.

User 1 Login: 2009:11:16 - 10:25:38

User 2 Login: 2009:11:16 - 10:29:12

– The time line includes entries that are not within a time span that infers local creation.

61

www.manaraa.com

A summary of the time line produced by Dataprocess.py is available in Figure 10.

Figure 10: Time line Summary (Image 2: File 1)

The correlations presented show that the file could not have been created locally, as the

file existed before the operating system was installed. The creation date is also much earlier

than the file’s first sighting on the system. The last editor was a user that does not exist on

this system, meaning the file was not edited locally. Therefore, due to the editing flag and

being active, we know that the file must have been copied and pasted to its current location.

The user appears to have viewed the file using some office product based on the officeinteract

flag. They most likely used excel based on the file type. The file appears to have arrived by

62

www.manaraa.com

either USB or Skype based on the activated flags.

The time line further reinforces the notion that the file could not have been modified

locally, as the file last modified date and time is long before the file arrival time. A USB

device is connected on the same day as the file’s arrival; however, this occurs 9 hours previous

to the event of interest. Notepad is executed just before the file arrives, but it is unable to

create an xls file. It was likely used to take notes based on the contents of the file of interest.

This leaves Skype as the most likely source of the file. User 1 executes Skype within half

an hour of the file’s arrival. This is a reasonable time span for a conversation to take place,

during which a file is transferred. The execution of FTK does not appear to be relevant to

the file of interest. Therefore, User 1 most likely brought the file onto the system via Skype,

moved it to its current location, viewed the contents using excel, and copied some of the

information into a txt file.

Provenance Narrative

An external user edits the file after creation, but not locally. Someone creates the file

on another system, and then User 1 transfers it to this system via Skype on 2009:11:16 at

10:39:45. Next, a user copies and pastes it to its current location, most likely User 1. This

user then uses Excel to view the file.

Image 2: File 2

The following booleans are set to True for the second file of interest, a zip file, on image

2.

– userinteract - A user, user 1, interacted with the file of interest.

Arrival/First Interaction: 2009:12:10 - 16:11:12

– editing - The file appears to have either been edited or copied within the system due

its mtime being much different than its arrival time. The mtime is provided to the

user.

63

www.manaraa.com

– samedaylogin - User 3 has a last log in date that is the same day the file arrived on

the system.

User 3 Login: 2009:11:16 - 15:06:02

– ie5 content - References to the file exist within Internet Explorer’s Temporary Inter-

net Files (TIF).

– The time line includes entries that are not within a time span that infers local creation.

A summary of the time line produced by Dataprocess.py is available in Figure 11.

Figure 11: Time line Summary (Image 2: File 2)

64

www.manaraa.com

A creation date is unavailable for this file, so the proper checks are unable to determine

local creation. Looking at the time line; however, it is obvious that the file did not originate

locally, as the file last modified date is long prior to that of the file’s arrival. This date

and time is pulled from the file contained within the compressed directory. From here, it is

important to note that the ie5 content flag is activated. This points to a high probability of

a web based file source. It is evident that user 1 most likely either copied or edited the file

of interest. The editing is most likely the compressing of the file.

The time line reinforces and further refines the theory of a web source. The web browser,

Safari, is installed and executed by user 1 20 minutes before the arrival of the file. Winzip

is also executed by user 1 moments before the file is first seen on the system. This makes

it highly likely that the file was downloaded by User 1 using Safari, then compressed and

moved to its current location.

Provenance Narrative

Someone creates the file externally, and someone else modifies it on 2007:3:10 at 17:31.

User 1 then downloads it via Safari on 2009:12:10 at 16:11:12. Next, User 1 compresses the

file, and moves it to its current location.

Image 2: File 3

The following booleans are set to True for the third file of interest, an mp3 file, on image

2.

– userinteract - A user, User 1, interacted with the file of interest.

Arrival/First Interaction: 2009:11:16 - 10:40:10

– usbdatematch - A removable disk was used on the same day that the file first arrived

on system.

USB Connected: 2009:11:16 - 1:48

65

www.manaraa.com

– skype30min - Skype was used within 30 minutes of the file first being seen on system.

Skype Execution: 2009:11:16 - 10:39:45

– samedaylogin - User 1 and user 2 have a last log in date that is the same day the file

arrived on the system.

User 1 Login: 2009:11:16 - 10:25:38

User 2 Login: 2009:11:16 - 10:29:12

– The time line includes entries that are not within a time span that infers local creation.

Figure 12: Time line Summary (Image 2: File 3)

66

www.manaraa.com

Limited information is available about this file due to the decreased metadata associated

with mp3 files compared to the other files analyzed. This results in only a few presented

correlations, showing Skype usage within 30 minutes of the file’s arrival, a USB connection

on the day of its arrival, and two user log ins on the arrival day. Fortunately, the time line

helps flesh out the remaining details necessary to determine how the file arrived on system.

This time line looks very similar to the one shown for image 2: file 1. It appears that this

file also arrived by Skype, most likely delivered along with File 1. It is also possible that

this file, along with file 1, were transferred via USB. Due to the time difference between the

USB connection and the file’s arrival; however, Skype is a much more likely file source. The

provenance available for this file is much more limited than what is achievable with Microsoft

Office files.

Provenance Narrative

Someone creates the file externally, and User 1 acquires it via a Skype conversation on

2009:11:16 at 10:40:10.

Image 2: File 4

The following booleans are set to True for the fourth file of interest, a .doc file, on image

2.

– userinteract - A user, User 1, interacted with the file of interest.

Arrival/First Interaction: 2009:11:16 - 7:36

– usbdatematch - A removable disk was used on the same day that the file first arrived

on system.

USB Connected: 2009:11:16 - 1:48

– skypedatematch - Skype was used on the same day that the file first arrived on the

system.

Skype Execution: 2009:11:16 - 10:39:45

67

www.manaraa.com

– samedaylogin - User 1 and user 3 have a last log in date that is the same day the file

arrived on the system.

User 1 Login: 2009:11:16 - 10:25:38

User 3 Login: 2009:11:16 - 15:06:02

– officeinteract - Office was used to interact with the file.

Arrival/First Interaction: 2009:11:16 - 7:36

– The time line includes entries that are not within a time span that infers local creation.

Figure 13: Time line Summary (Image 2: File 4)

68

www.manaraa.com

The correlations show that user 1 interacted with the file of interest, and that they are

the only user that interacted with the file. Therefore, user 1 allowed the file to arrive on the

system. User 1 used an office tool, most likely Microsoft Word, to interact with the file after

arrival, as the officeinteract flag shows. User 3 was logged on as well the day the file arrives,

so they may have some knowledge of the file’s arrival.

The time line entries do not infer local creation, as the file is created a full day before

it arrives on the local system. so the file must have originated from an external source. A

USB device was attached on the same day as the file’s arrival, and Skype was used as well,

marking them as potential sources for the file. However, upon looking at the time line, it

immediately becomes apparent that Skype is not the source of the file, as it is executed

after the file’s arrival (Removed from time line due to being out of scope). The USB device

is a possible source; however, Mozilla Firefox is the more probably file source based on it

being executed in greater proximity to the file’s arrival. Unfortunately, the system’s Fire

Fox history is erased, and therefore it is difficult to draw definitive conclusions about the

origins of the file.

Some other important facts that help attribute the file to a browser source is that the

name of the file’s last modifier is simply “Server”. This implies that the file was modified by

some sort of web server before its arrival on the current system. This modification occurs

moments before the file’s arrival, and is therefore likely caused by an automated system.

The user also interacts with many other .doc files during this time period, lending to the

suspicion that they downloaded all of these file’s within close proximity to one another using

the Fire Fox web browser.

Provenance Narrative

Someone creates the file externally on 2009:11:15 at 15:59, and User 1 downloads it using

Mozilla Firefox on 2009:9:8 at 4:50:50. User 1 then interacts with the file using Microsoft

69

www.manaraa.com

Word some time near its arrival, although it is unclear exactly when.

Image 3: File 1

The following booleans are set to True for the first file of interest, a .jpg file, on image 3.

Image 3 is a Windows XP machine with Service Pack 2 installed.

– usbdatematch - A removable disk was used on the same day that the file first arrived

on system.

USB Connected: 2009:9:8 - 15:27:45

– ie5 content - References to the file exist within Internet Explorer’s Temporary Inter-

net Files (TIF).

Download Hosts Visited: 2009:9:8 - 2:50:27-3:12:43

– userinteract - A user, User 1, interacted with the file of interest.

Arrival/First Interaction: 2009:9:8 - 4:50:50

When dealing with a .jpg file, there is limited metadata available. The creation date

and time of the file is therefore unknown. Because of this, many common correlation checks

are not possible. Fortunately, enough evidence is still present in this case to allow for an

adequate rebuilding of the file’s provenance. The first boolean, usbdatematch, shows that

one or more USB devices were connected on the day of the file’s arrival. Looking at the time

line, it is apparent that these drives are not the source of the file, as they are both connected

long after the file’s arrival.

The next boolean, ie5 content, shows that the file is referenced within Internet Explorer’s

TIF. This occurrence has a strong correlation with the file arriving via a browser. The time

line confirms this, showing that a user visited various download hosting websites about an

hour prior to the file’s arrival. The file has the [1] symbol appended to it, which means

that it was downloaded twice. Therefore, a probably provenance of the file is that User 1

70

www.manaraa.com

Figure 14: Time line Summary (Image 3: File 1)

downloaded the original file using the web browser at the last web download host noted in

the time line. They then most likely walked away from the computer for an hour, forgot

they downloaded the file, and downloaded it a second time, resulting in it arriving an hour

after the user visited the source web link.

Provenance Narrative

An external user creates the file, and User 1 later downloads it via Internet Explorer on

2009:9:8 at 4:50:50.

Image 4

71

www.manaraa.com

DataGather.py failed to gather the relevant information necessary to obtain the prove-

nance on any of the file’s on image 4. This is due to log2timeline being unable to scan the

source due to one of its library’s, libsigscan, inability to read a necessary buffer. Joachim

Metz, the creator of log2timeline, responds to this error [22] but no fix is applied at this

time.

Image 5: File 1

The following booleans are set to True for the first file of interest, a .jpg file, on image 5.

Image 5 is a Windows XP machine with Service Pack 2 installed.

– userinteract - Two users, Users 1 and 2, interacted with the file of interest.

– ie5 content - The file is referenced within Internet Explorer’s Temporary Internet

Files (TIF).

Unfortunately, not enough data is available on this file in order to reliably build a time

line. There is also insufficient metadata available to determine when the file was created,

or if it was modified at any point post-creation. References to the file exist within Internet

Explorer’s TIF; however, which means that it is almost certain the final arrived via a browser.

It is also apparent that two user’s on the system, user’s 1 and 2 interacted with the file post-

arrival.

Image 5: File 2

The following booleans are set to True for the second file of interest, a .doc file, on image

5.

– userinteract - A user, Users 2, interacted with the file of interest.

Arrival/First Interaction: 2009:12:18 - 16:15:00

– Creator not Modifier - Looking at the file’s metadata, the software sees that the

file’s creator is not the same user as the file’s modifier. This is not a boolean flag, but

the software still outputs this information. The modifier’s name is also provided.

72

www.manaraa.com

– ie5 content - References to the file exist within Internet Explorer’s Temporary Inter-

net Files (TIF).

Sports Site Visit: 2009:12:18 - 16:01:27

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

Creation: 2009:12:18 - 16:15:00

Arrival: 2009:12:18 - 16:15:00

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

Creation: 2009:12:18 - 16:15:00

Arrival: 2009:12:18 - 16:15:00

– officeinteract - Office was used to interact with the file.

Arrival/First Interaction: 2009:12:18 - 16:15:00

The results of running the software on this image/file show that the file was most likely

downloaded by user 2. A reference to the file is found within the TIF folder of Internet

Explorer, which correlates to the file arriving from a web source. It is also apparent, based

on the time line, that the user visited a variety of websites within close proximity to the

file’s arrival that may have been the source of the file. The most likely of these websites is

the sports website.

Based on the date check and time check flags, it is apparent that the file was created

at the same time that it arrived on the system. This could be due to the user using some

web based program to generate the file, and then downloading it upon generation. The

file is modified a year later based on its metadata. Unfortunately, it is not at all clear

how this occurred. The only program executions that occur within close proximity to this

73

www.manaraa.com

Figure 15: Time line Summary (Image 5: File 2)

modification is user 2 opening the Windows toolbar. The user name that last modified the

file also does not exist on the system, creating further confusion.

Provenance Narrative

A sports website creates the file on 2009:12:18 at 16:15:00, and User 2 downloads it

immediately afterward using Internet Explorer. An external user somehow modifies the file

on 2010:1:23 at 13:17:0.

Image 6: File 1

The following booleans are set to True for the first file of interest, a .docx file, on image

74

www.manaraa.com

6. Image 6 is a Windows XP machine with Service Pack 3 installed.

– userinteract - A user, Users 1, interacted with the file of interest.

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– officeinteract - Office was used to interact with the file.

Unfortunately, there wasn’t enough information available on this file to properly gener-

ate a time line. The only things that are valuable within the time line, are the creation,

modification, and arrival times. This information still provides valuable input, as all of these

dates/times are the same. This greatly increases the probability that the file was locally

created. The activated boolean variables help confirm these suspicions. It is evident that a

user interacted with the file of interest. The investigator is also able to see the file arrived

within 30 minutes of its creation, and that a user, obviously the user who interacted with

the file, used office to do something with the file. Based on all of these factors, user 1 used

Microsoft Word to create the file of interest.

Image 6: File 2

The following booleans are set to True for the first file of interest, a .docx file, on image

6. Image 6 is a Windows XP machine with Service Pack 3 installed.

– userinteract - A user, Users 1, interacted with the file of interest.

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

75

www.manaraa.com

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– officeinteract - Office was used to interact with the file.

This file presents a similar situation to the one previous to it. Considering it was found

in the same directory, and that the same boolean variables are active, the file most likely

originated from the same source. User 1 most likely created this file, just as they created file

1.

Image 7: File 1

The following booleans are set to True for the first file of interest, a .doc file, on image

7. Image 7 is a Windows XP machine with Service Pack 2 installed.

– userinteract - A user, User 1, interacted with the file of interest.

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– officeinteract - Office was used to interact with the file.

– time linerelevant removable disk usage - A time line entry references the file of

interest, as a well as a USB drive.

– systemuser - The file’s creator has the same user name as a user who exists on this

system.

– systemmod - The file’s last modifier has the same user name as a user who exists on

this system.

76

www.manaraa.com

There was not enough information to produce a time line, but enough conclusions are

drawn from the activated boolean variables to determine the source of the file. It is immedi-

ately apparent that a user on the system interacted with the file of interest. Looking at the

rest of the output, it is visible that this user is the same one who created and last modified

the file. This is apparent thanks to the systemuser and systemmod flag’s activation. It is

also evident that an office tool was used to interact with the file of interest.

A USB device is in the creating user’s recently used documents along with this file, which

often is a symptom of a USB source for the file. In this case, the overwhelming evidence for

local creation in this case overshadows this one USB factor. Based on the factors presented,

it is apparent that user 1 created the file on the system, and then modified it half an hour

later. The later modification time is visible based on the few obtained time line entries.

Image 7: File 2

The following booleans are set to True for the first file of interest, a .doc file, on image 7.

– userinteract - A user, User 1, interacted with the file of interest.

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– officeinteract - Office was used to interact with the file.

– time linerelevant removable disk usage - A time line entry references the file of

interest, as a well as a USB drive.

– systemuser - The file’s creator has the same user name as a user who exists on this

system.

77

www.manaraa.com

– systemmod - The file’s last modifier has the same user name as a user who exists on

this system.

The booleans activated for this file are the same as the one previous, with the same user

as the source. Therefore, it is reasonable to draw the conclusion that user 1 locally created

this file as well.

Image 7: File 3

The following booleans are set to True for the first file of interest, a .doc file, on image 7.

– userinteract - A user, User 1, interacted with the file of interest.

– word modify day - Microsoft word was used on the same day as this file’s last mod-

ification.

– date check - Relevant time line entries exist that refer to the file of interest on the

same day that it was created.

– time check - Relevant time line entries exist that refer to the file of interest within

thirty minutes of its creation.

– officeinteract - Office was used to interact with the file.

– time linerelevant removable disk usage - A time line entry references the file of

interest, as a well as a USB drive.

– systemuser - The file’s creator has the same user name as a user who exists on this

system.

– systemmod - The file’s last modifier has the same user name as a user who exists on

this system.

78

www.manaraa.com

While this file’s provenance is almost the same as the one’s previous to it, and interested

differentiation occurs. The word modify day flag activates, and the program includes the

date and time of a Microsoft word execution with the time line. This shows that MW was

executed locally within 5 minutes of the file’s last modification date, by user 1. All other

factors are the same, which means that this simply helps reinforce the notion of local creation

and modification, and that the user, user 1, was well aware of the presence of this file.

4.3 Summary

In the majority of the test cases presented, the AutoProv successfully rebuilt the file’s

provenance. The controlled testing shows that all of the implemented boolean variables

behave as expected. Within the context of the RDC, they point out valuable correlations

that show the examiner likely sources of the file. When combined with the time line, if

available, the source of the file is almost always evident, as well as much of the activity

surrounding the arrival of the file.

Unfortunately, the data within images 6 and 7 did not allow for a thorough and complete

time line. This was due to a lack of file explorer history, and no obvious program executions

within the NTUSER.dat hive surrounding the arrival of the file. It is possible that this is due

to purposeful obfuscation, which this program is not designed to detect or circumnavigate.

79

www.manaraa.com

5. Conclusions

It is possible to rebuild most of a file’s provenance on a Windows forensic image. This

task is far more difficult than it is on a live machine, as many of the resources available

when dealing with a live platform are not present on a forensic image, including the system’s

memory and the live tracking of user activities. Despite these limitations, there is more often

than not enough information available in the remaining provenance sources to recreate the

various activities related to a file of interest.

The metadata of select files provides essential data for provenance recreation. Microsoft

Office files, such as .xls and .docx files, often have highly useful metadata. In contrast, the

availability of this information is much more limited in other files, such as .mp3. This data

includes who created the document, when it was created, who last modified the document,

when that modification occurred, and when the document was last accessed. By combining

this information with the rest of the data gathered from within the system, provenance

accuracy is greatly increased. Therefore, provenance recreation is far more feasible when

dealing with a file that has detailed metadata available.

The registry hive contains many lucrative sources of information that aid in provenance

recreation. Primarily, the NTUSER hives for the various non-default users present on a

system contains a plethora of valuable data. Various program executions and other activities

that lead to the creation and/or arrival of a file on the system are found within this registry

hive. Compiling entries that occur within a relevant time span, and parsing them for possible

correlations yields many positive results that often enables the user to determine the file’s

source, and other interactions with the file that are relevant to its provenance.

One of the most unexpectedly valuable sources of file provenance was the Internet Ex-

plorer history directories. These directories and files were originally parsed to gather infor-

mation on the users browsing activity. Upon closer inspection, it became apparent that they

80

www.manaraa.com

also contain information on all of the user’s file explorer browsing activities as well. This

information helped draw more conclusive provenance in many cases where a file’s metadata

was not quite as thorough.

In tandem with this, the various other browser histories often helped make it abundantly

apparent when a file was downloaded from a web source. For example, there was several

instances where the web address of a mail server was referenced just prior to the arrival of a

file. This makes it apparent that the user most likely acquired the file from the web server,

downloading it onto the system of interest.

Various other regions of the registry were explored as well, and found useful for deter-

mining the provenance of a file. For example, the system hive contains information on the

system’s installation date, as well as various USB interactions. This helped to determine

when a file was created long before the installation of a system, lending to the conclusion

that the file could not have been created locally. The USB interactions, when in close prox-

imity to a file’s arrival on system, helped to determine whether a file could have possibly

been transferred from a referenced USB device.

5.1 Future Work

The metadata of many of these files was used to help determine their provenance. Un-

fortunately, it is possible for a savvy user to easily modify these values, obfuscating the

true provenance. In the worst case, these alterations could lead to the incrimination of a

unrelated party. Methods to detect these alterations, and notify the user of their occurrence,

would be useful in ensuring the accuracy of the provenance presented.

There are additional methods that lead to the obfuscation of a file’s provenance. A

powerful tool that is briefly mentioned earlier in this thesis is Timestomp. This tool alters

many of the values that this thesis uses to determine the provenance of a file. Any methods

of detection that aid a user’s awareness of the use of this software are valuable. Detection of

81

www.manaraa.com

the use of Timestomp is a highly difficult proposition, and therefore it was outside the scope

of this thesis.

There are many ways a file arrives on a system, and even more that it is interacted with.

This thesis barely touches on the surface of these possibilities, seeking only to provide a

proof of concept that it is possible to recreate a file’s provenance if enough possible inter-

action and arrival sources are accounted for. The automated browser history investigation

that this software accomplishes is useful for determining when web email services are used.

Unfortunately, it does not account for the use of software such as Outlook to acquire emails

and their respective attachments. An excellent addition to this project would therefore be

the automated detection of various Outlook interactions, and any history associated with

outlook itself.

Another possible avenue of arrival is FTP. There is a variety of FTP software that are

capable of transferring a file from one machine to another. Exhaustive accounting for each

of these pieces of software would be arduous, therefore finding some sort of common de-

nominator between files that arrive by this methodology is essential. Finding this common

sign within the registry or some similar location may allow the software to automatically

determine when FTP accommodates a file’s arrival.

A similar problem this thesis encountered was detecting when torrenting software is used

to acquire a file. The method presented in the methodology shows, using FrostWire as

an example, that it is possible to exhaustively account for the software used to obtain a

file. Modifying this method into something that is more general would be highly valuable for

ensuring similar software works in many cases, and that it remains viable as future torrenting

software is introduced.

This software uses the MAC times in order to determine when activities such as file

movement occur. These values are modifiable, and therefore a more resilient method of

determining when movements, cut-paste, and accesses occur would be beneficial to the func-

82

www.manaraa.com

tionality of AutoProv. For example, finding another sign of these activities present in the

registry or some other relevant location, and comparing this with the MAC values present on

the file of interest, could lead to interesting insights into whether value tampering occurred.

83

www.manaraa.com

Appendix A: Abbreviations

DFRWS Digital Forensic Research Workshop

DOJ Department of Justice

EXIF Exchangeable Image File Format

FPMS File Provenance Maintenance System

FTK Forensic Tool Kit

FTP File Transfer Protocol

MAC Modification, Access, Change

MW Microsoft Word

PVM Provenance Versioning Model

RAM Random Access Memory

RDC Real Data Corpus

SAM Security Account Manager

TSK The Sleuth Kit

USB Universal Serial Bus

WAP Wireless Access Point

84

www.manaraa.com

References

[1] N. Balakrishnan, T. Bytheway, L. Carata, O. Chick, J. Snee, S. Akoush, R. Sohan,

M. Seltzer, A. Hopper, “Recent advances in computer architecture: the opportunities

and challenges for provenance” 7th USENIX Workshop on the Theory and Practice of

Provenance (TaPP 15), 2015.

[2] N. Beebe, G. Dietrich, “A new process model for text string searching.” IFIP Interna-

tional Conference on Digital Forensics Springer, NY, 2007.

[3] F. Buchholz, C. Falk, Design and implementation of Zeitline: a forensic time line.

Proceedings of the 2005 Digital Forensic Research Workshop New Orleans, LA, 2005.

[4] B. Carrier, E. Spafford, “Automated digital evidence target definition using outlier

analysis and existing evidence. In Proceedings of the” 2005 Digital Forensics Research

Workshop

[5] O. Carroll, S. Brannon, T. Song, “Computer Forensics: Digital Forensic Analysis

Methodology” Computer Forensics Volume 56 Number 1, 2008

[6] H. Carvey, Windows Registry Forensics: Advanced Digital Forensic Analysis of the

Windows Registry Syngress, Massachusetts, 2016.

[7] A. Case, A. Cristina, L. Marziale, G. Richard, V. Roussev, FACE: automated digital

evidence discovery and correlation. Digital Investigation Volume 5, pp. 65–75, 2008

[8] E. Casey, Digital evidence and computer crime: Forensic science, computers, and the

internet pp. 3-34, 2011.

[9] D. Edwards, Computer forensic time line analysis with tapestry 2011

85

www.manaraa.com

[10] Unix Time Stamp (http://www.unixtimestamp.com/)

[11] J. Farrell, A Framework for Automated Digital Forensic Reporting, Naval Postgraduate

School, 2009

[12] K. Gudjonsson, “Mastering the Super time line With log2timeline” SANS Institute

Information Security Reading Room, 2010

[13] P. Harvey, Exiftool (http://owl.phy.queensu.ca/phil/exiftool/), 2012

[14] R. Hasan, R. Sion, and M. Winslett, “Preventing history forgery with secure prove-

nance”. ACM Transactions on Storage (TOS) Volume 5 Issue 4, 12:1–12:43, 2009.

[15] C. Jensen, H. Lonsdale, E. Wynn, J. Cao, M. Slater, T. Dietterich, “The life and times

of files and information: a study of desktop provenance” SIGCHI Conference on Human

Factors in Computing Systems Proceedings, pp. 767-776, 2010

[16] C. Lee, J. Trost, N. Gibbs, R. Beyah, J. Copeland “Visual Firewall: Real-time Network

Security Monitor” IEEE Visualization for Computer Security, 2005

[17] “Linux Howtos and FAQs.” LINUX-FAQS.INFO. Web.

[18] D. Manson, A. Carlin, S. Ramos, A. Gyger, M. Kaufman, and J. Treichelt, “Is the open

way a better way? Digital forensics using open source tools,” System Sciences HICSS

40th Annual Hawaii International Conference on. IEEE, pp. 266b, 2007

[19] D. Margo, M. Seltzer, ”The Case for Browser Provenance.” Workshop on the Theory

and Practice of Provenance, 2009.

[20] D. Margo, R. Smogor Using Provenance to Extract Semantic File Attributes Proceedings

of the 2nd conference on Theory and practice of provenance, pp. 7–7, 2010

86

www.manaraa.com

[21] S. Garfinkel, P. Farrell, V. Roussev, G. Dinolt, “Bringing science to digital forensics with

standardized forensic corpora” Proceedings of the 9th Annual Digital Forensic Research

Workshop (DFRWS), 2009

[22] log2timeline unable to read buffer (https://github.com/log2timeline/plaso/issues/869)

2016

[23] Merriam-Webster Dictionary (https://www.merriam-webster.com/dictionary/provenance)

[24] W. Minnaard, MSc final research project report Timestomping NTFS University of

Amsterdam, 2014

[25] K. Muniswamy-Reddy, D. Holland, U. Braun, M. Seltzer, “Provenance-Aware Storage

Systems” USENIX Annual Technical Conference Refereed Paper, 2006

[26] Nirsoft ChromeHistoryView Tool http://www.nirsoft.net/utils/chrome history view.html

[27] NirSoft MZHistoryView Tool (http://www.nirsoft.net/utils/mozilla history view.html),

2007

[28] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, Andy Hopper, “OPUS:

A Lightweight System for Observational Provenance in User Space”, Proceedings of the

5th USENIX Workshop on the Theory and Practice of Provenance, Berkeley, CA, USA,

series TaPP ’13 pp. 8:1–8:4, 2013.

[29] C. Rusen, “Simple questions: What is a file’s metadata and how to edit it in Win-

dows?” Digital Citizen, (http://www.digitalcitizen.life/what-file-s-metadata-and-how-

edit-it), 2016

[30] S. Sultana, E. Bertino, A File Provenance System CODASPY, 2013

87

www.manaraa.com

[31] SANS Forensic Artifact 6: UserAssist (http://sploited.blogspot.com/2012/12/sans-

forensic-artifact-6-userassist.html), 2012

[32] M. Willard, ”Getting the Most out of your Firewall Logs” SANS Institute InfoSec

Reading Room, 2002

[33] E. Zadok, I. Badulescu, A Stackable File System Interface For Linux LinuxExpo Con-

ference Proceedings, 141-151, 1999

88

www.manaraa.com

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
23-03-2017

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From - To)
 Sept 2015 - March 2017

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

AutoProv: An Automated File Provenance Collection Tool

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Good, Ryan A, 2nd Lt USAF

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Air Force Institute of Technology
Graduate School of Engineering and
Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
 DC3
DoD Cyber Crime Center (phone: 410-694-4310)
Eoghan Casey (email: Eoghan.casey@dc3.mil)

 11. SPONSOR/MONITOR’S REPORT
1190 Winterson Rd
 Linthicum, MD 21090

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A. Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT
A file's provenance is a detailing of its origins and activities. There are tools available
that are useful in maintaining the provenance of a file. Unfortunately for digital
forensics, these tools require prior installation on the computer of interest while
provenance generating events happen. The presented tool addresses this by reconstructing a
file's provenance from several temporal artifacts. It identifies relevant temporal and user
correlations between these artifacts, and presents them to the user. A variety of predefined
use cases and real world data are tested against to demonstrate that this software allows
examiners to draw useful conclusions about the provenance of a file.

15. SUBJECT TERMS
Windows Forensics, forensic timelines, file provenance

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Gilbert L. Peterson
AFIT/ENG

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU
98

19b. TELEPHONE NUMBER (include area
code)
937-255-3636 x 4281
Gilbert.peterson@afit.edu
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2017

	AutoProv: An Automated File Provenance Collection Tool
	Ryan A. Good
	Recommended Citation

	tmp.1538140875.pdf.SiNBc

